TRIDONIC

Driver LCBI 15W 350/500/700mA BASIC phase-cut lp

Baureihe advanced

Produktbeschreibung

- _ Dimmbar mittels Phasenan- und Phasenabschnittsdimmer
- _ Ausgang wird analog gedimmt (Stromamplitude)
- _ Dimmbereich typ. 5 100 % (abhängig vom Dimmer)
- _ Schutzart IP20
- _ Steckklemmen
- _ Anschlusskabel, Leitungsquerschnitt 0,5 1,5 mm²
- _ SELV
- _ 350, 500 oder 700 mA Ausgangsstrom
- _ Ausgangsleistung 15/16 W
- $_$ Nominale Lebensdauer von 50.000 h (bei ta max. 50 °C und einer Fehlerrate von ≤ 0,2 % pro 1.000 h)
- _ 5 Jahre Garantie

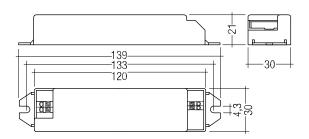
Eigenschaften

- _ Gehäuse: Polycarbonat, weif3
- _ Kompakte Abmessungen
- _ Überlastschutz
- _ Kurzschlussschutz
- _ Leerlaufschutz

Website

http://www.tridonic.com/89800255

Linear



Dekorativ

TRIDONIC

Driver LCBI 15W 350/500/700mA BASIC phase-cut lp

Baureihe advanced

Bestelldaten

Тур	Artikelnummer	Verpackung Karton	Verpackung Palette	Gewicht pro Stk.
LCBI 15W 350mA BASIC lp	89800255	25 Stk.	1.200 Stk.	0,053 kg
LCBI 15W 500mA BASIC Ip	89800256	25 Stk.	600 Stk.	0,053 kg
LCBI 15W 700mA BASIC Ip	89800257	25 Stk.	600 Stk.	0,053 kg

Technische Daten

recimisene Baren	
Netzspannungsbereich	220 – 240 V
Wechselspannungsbereich	198 – 264 V
Netzfrequenz	50 / 60 Hz
Typ. Nennstrom (bei 230 V, 50 Hz, Volllast)	100 mA
λ bei Volllast	0,99
λ bei min. Last	0,97
Ausgangsstromtoleranz bei Volllast ^{①②③}	± 7,5 %
Typ. Ausgangsstrom Restwelligkeit (bei 230 V, 50 Hz, Volllast)	± 30 %
Startzeit (bei 230 V, 50 Hz, Volllast)	≤ 0,1 s
Abschaltzeit (bei 230 V, 50 Hz, Volllast)	≤ 0,1 s
Haltezeit bei Netzunterbrechung (Ausgang)	0 s
Umgebungstemperatur ta	-25 +50 °C
Max. Gehäusetemperatur tc	85 °C
Lagertemperatur ts	-40 +85 °C
Lebensdauer	bis zu 50.000 h
Garantie	5 Jahr(e)
Abmessungen L x B x H	139 x 30 x 21 mm
Abinessangen Ex B x 11	137 X 30 X ZT IIIIII

Prüfzeichen

Normer

EN 55015, EN 61000-3-2, EN 61000-3-3, EN 61347-1, EN 61347-2-13, EN 61547, EN 62384

Spezifische technische Daten

Τγρ	Wirkungsgrad bei Volllast [®]	Wirkungsgrad bei min. Last ®	Ausgangsstrom [®]	Max. Ausgangsdauerspitzensfro m bei Volllast	Max. Ausgangsdauerspitzenstro m bei min. Last	Max. Ausgangsstofsstrom bei Volllast	Max. Ausgangsstoßstrom bei min. Last	Max. Vorwärtsspannung [®]	Min. Vorwärtsspannung	Ausgangsspannungsbereich	Max. Ausgangsspannung (U-OUT)	Max. Eingangsleistung	Max. Ausgangsleistung
LCBI 15W 350mA BASIC Ip	78 %	76 %	350 mA	540 mA	720 mA	540 mA	720 mA	46,0 V	21,0 V	21,0 - 46,0 V	51 V	21 W	15 W
LCBI 15W 500mA BASIC Ip	77 %	75 %	500 mA	840 mA	1.040 mA	840 mA	1.040 mA	30,0 V	13,5 V	13,5 - 30,0 V	34 V	20 W	15 W
LCBI 15W 700mA BASIC Ip	76 %	74 %	700 mA	1.280 mA	1.640 mA	1.280 mA	1.640 mA	21,5 V	10,0 V	10,0 - 21,5 V	24 V	20 W	15 W

① Verlauf zwischen min. Last und Volllast linear.

 $[\]ensuremath{@}$ Ausgangsstromtoleranz bei min. Last max. 22 %.

LED-Treiber

Kompakt Dimming

- ③ Ausgangsstrom ist Mittelwert.④ Testwert bei 230 V, 50 Hz.⑤ Im Fehlermodus.

Kompakt Dimming

Normen

EN 55015

EN 61000-3-2

EN 61000-3-3

EN 61347-1

EN 61347-2-13

EN 61547

EN 62384

Überlastschutz

Wird die maximale Last um einen definierten internen Grenzwert überschritten, wird der LED-Ausgangsstrom reduziert. Nach Behebung der Überlast erfolgt automatische Rückkehr in den nominalen Betrieb.

Verhalten bei Kurzschluss

Bei Kurzschluß am LED Ausgang schaltet der LED-Treiber in den hic-cup-Modus. Nach Behebung des Kurzschlußes erfolgt automatische Rückkehr in den nominalen Betrieb.

Verhalten bei Leerlauf

Der LED-Treiber arbeitet mit Konstantstrom. Im Leerlauf liegt am Ausgang die maximale Ausgangsspannung an (siehe Seite 1).

Installationshinweis

Beachten Sie hierzu die Vorgaben aus dem Dokument

LED_Betriebsgeraete_Installationshinweis.pdf (http://www.tridonic.com/com/de/technische-doku.asp).

Hot-Plug-In oder sekundäres Schalten der LEDs ist nicht erlaubt und kann zu sehr hohem Strom in den LEDs führen.

Erwartete Lebensdauer

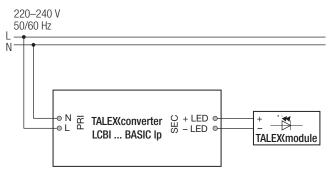
Тур	ta	40 °C	45 °C	50 °C	60 °C	
LCBI 15W 350mA basic lp	tc	75 ℃	80 °C	85 ℃	Х	
LCBI ISW SSOIIIA BASIC IP	Lebensdauer	100.000 h	70.000 h	50.000 h	Х	
LCBI 15W 500mA basic lp	tc	75 °C	80 °C	85 ℃	Х	
LCBI 15W 300IIIA Basic IP	Lebensdauer	100.000 h	70.000 h	50.000 h	Х	
LCBI 15W 700mA basic lp	tc	75 °C	80 °C	85 ℃	Х	
LCBI ISW 700IIIA Basic IP	Lebensdauer	100.000 h	70.000 h	50.000 h	Х	

Die LED-Treiber sind für die oben angegebene Lebensdauer ausgelegt, unter Nennbedingungen mit einer Ausfallswahrscheinlichkeit von kleiner 10 %.

Die Abhängigkeit des Punktes to von der Temperatur ta hängt auch vom Design der Leuchte ab.

Liegt die gemessene Temperatur to etwa 5 K unter to max., sollte die Temperatur ta geprüft und schließlich die kritischen Bauteile (z.B. ELCAP) gemessen werden.

Detaillierte Informationen auf Anfrage.

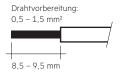

${\bf Maximale\ Belastung\ von\ Leitungsschutzautomaten\ bezogen\ auf\ den\ Einschaltstrom}$

Sicherungsautomat	C10	C13	C16	C20	B10	B13	B16	B20	Einschaltstrom	
Installation Ø	1,5 mm ²	1,5 mm ²	1,5 mm ²	2,5 mm ²	1,5 mm ²	1,5 mm ²	1,5 mm ²	2,5 mm ²	Imax	Pulsdauer
LCBI 15W 350mA basic lp	50	65	80	100	50	65	80	100	1,7 A	40 µs
LCBI 15W 500mA basic lp	50	65	80	100	50	65	80	100	1,7 A	40 µs
LCBI 15W 700mA basic lp	50	65	80	100	50	65	80	100	1,7 A	40 μs

Dies sind max. Werte, die aus dem Einschaltstrom berechnet werden! Achten sie darauf, den max. Nenndauerstrom des Leitungsschutzautomaten nicht zu überschreiten. Kalkulation verwendet typische Werte der Leitungsschutzautomaten-Serie ABB S200 als Referenz.

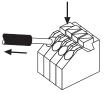
Tatsächliche Werte können je nach verwendeten Leitungsschutzautomatentypen und der Installationsumgebung abweichen.

Anschlussdiagramm


Glühdrahttest nach IEC 60695-2-11

850 °C bestanden.

Leitungsart und Leitungsquerschnitt


Zur Verdrahtung können Litzendraht mit Aderendhülsen oder Volldraht von 0,5 bis 1,5 mm² verwendet werden.

Für perfekte Funktion der Steckklemmen (WAGO 250) Leitungen 7,5 – 8,5 mm abisolieren.

Lösen der Klemmenverdrahtung

Dazu den "Drücker" an der Klemme betätigen und den Draht nach vorne abziehen.

Verdrahtungsrichtlinien

Die sekundären Leitungen sollten für ein gutes EMV-Verhalten getrennt von den Netz- Anschlüssen und -Leitungen geführt werden.

Die maximale Leitungslänge an den sekundären Klemmen ist 0,6 m. Für ein gutes EMV-Verhalten sollte die LED-Verdrahtung so kurz wie möglich gehalten werden.

Um Geräteausfälle durch Masseschlüsse zu vermeiden, muss die Verdrahtung vor mechanischer Belastung mit scharfkantigen Metallteilen (z.B. Leitungsdurchführung, Leitungshalter, Metallraster, etc.) geschützt werden

Gerätebefestigung

Max. Drehmoment für die Befestigung: 0,5 Nm/M4

Isolations- bzw. Spannungsfestigkeitsprüfung von Leuchten

Elektronische Betriebsgeräte für Leuchtmittel sind empfindlich gegenüber hohen Spannungen. Bei der Stückprüfung der Leuchte in der Fertigung muss dies berücksichtigt werden.

Gemäß IEC 60598-1 Anhang Q (nur informativ!) bzw. ENEC 303-Annex A sollte jede ausgelieferte Leuchte einer Isolationsprüfung mit 500 V $_{DC}$ während 1 Sekunde unterzogen werden.

Diese Prüfspannung wird zwischen den miteinander verbundenen Klemmen von Phase und Neutralleiter und der Schutzleiteranschlussklemme angelegt. Der Isolationswiderstand muss dabei mindestens $2\,\mathrm{M}\Omega$ betragen.

Alternativ zur Isolationswiderstandsmessung beschreibt IEC 60598-1 Anhang Q auch eine Spannungsfestigkeitsprüfung mit 1500 V $_{\text{AC}}$ (oder 1,414 x 1500 V $_{\text{DC}}$). Um eine Beschädigung von elektronischen Betriebsgeräten zu vermeiden, wird von dieser Spannungsfestigkeitsprüfung jedoch dringendst abgeraten.

Bedingungen für Betrieb

Der LED-Treiber ist ein Einbau-Betriebsgerät und damit für die Verwendung in Leuchten bestimmt.

Wird das Produkt außerhalb einer Leuchte verwendet, muss in der Installation ein geeigneter Schutz von Personen und Umgebung vorgesehen werden (z.B. bei Lichtdecken).

Maximale Anzahl an Schaltzyklen

Alle LED-Treiber werden mit 50.000 Schaltzyklen geprüft.

Zusätzliche Informationen

Weitere technische Informationen auf <u>www.tridonic.com</u> \rightarrow Technische Daten

Lebensdauerangaben sind informativ und stellen keinen Garantieanspruch dar.

Keine Garantie wenn das Gerät geöffnet wurde!