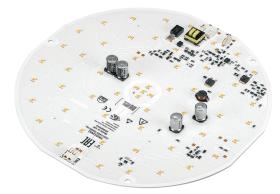


Engine CLE AC G2 220mm 2500lm ADV

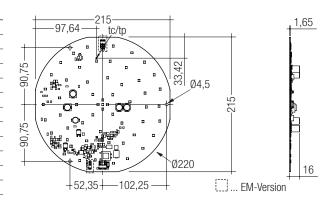

Module CLE

Produktbeschreibung

- Modul mit integrierter Elektronik
- Wirtschaftliche "Ein-Komponentenlösung"
- Einfache Umrüstung von bestehenden Leuchten mit DD-Kompaktleuchtstofflampen und T5-ringförmigen Lampen auf LED
- Ideal für Decken- und Wandleuchten
- Ermöglicht besonders flaches Leuchtendesign
- Hohe Farbwiedergabe Ra > 80
- Enge Farbtoleranz MacAdam 3
- Systemeffizienz bis zu 117 lm/W
- Integrierte separate Notlicht LED-Module, betrieben mit EM powerLED
- Simple CORRIDOR FUNCTION in Kombination mit jedem Sensor
- Touch Cover: Berührungsschutz von spannungsführenden Teilen
- Lebensdauer 50.000 h
- 5 Jahre Garantie

CLE AC G2 220mm 2500lm ADV

CLE AC G2 220mm 2500lm ADV EM CF



Engine CLE AC G2 220mm 2500lm ADV

Module CLE

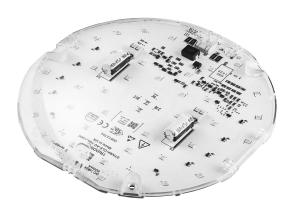
Technische Daten

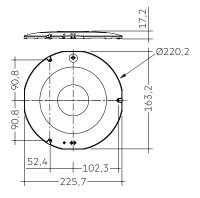
Netzspannungsbereich	220 – 240 V
Eingangsspannungsbereich AC	196 – 264 V
Netzfrequenz	50 / 60 Hz
λ (bei 230 V, 50 Hz)	0.97
THD	30 %
Abstrahlcharakteristik	120°
Umgebungstemperatur ta	-25 +45 °C
tp rated	65 °C
tc	85 °C
ESD-Klassifizierung	Prüfschärfegrad 4
Risikogruppe (IEC 62471:2008)	RG0
Klassifzierung nach IEC 62031	Built-in
Schutzart	IP00

Bestelldaten

Тур	Artikel-	Farbtemperatur	Verpackung	Gewicht	
	nummer	rarbiciliperarui	Karton	pro Stk.	
CLE AC G2 220mm 2500lm 830 ADV	89800515	3.000 K	10 Stk.	0,115 kg	
CLE AC G2 220mm 2500lm 840 ADV	89800516	4.000 K	10 Stk.	0,115 kg	
CLE AC G2 220mm 2500lm 830 ADV EM CF	89800517	3.000 K	10 Stk.	0,119 kg	
CLE AC G2 220mm 2500lm 840 ADV EM CF	89800518	4.000 K	10 Stk.	0,119 kg	

Spezifische technische Daten


Тур	Photometrischer	Typ. Lichtstrom	Typ. Lichtstrom	Eingangstrom	Eingangsleistung	Lichtausbeute System	Farbwiedergabein-
	Code	bei tp = 25 °C®	bei tp = 65 °C®	bei tp = 65 °C®	bei tp = 65 °C®	bei tp = 65 °C	dex Ra
Normalbetrieb	,						
CLE AC 220mm 2500lm 830 ADV	830/359	2.450 lm	2.320 lm	95,0 mA	21,90 W	106 lm/W	> 80
CLE AC 220mm 2500lm 840 ADV	840/359	2.700 lm	2.560 lm	95,0 mA	21,90 W	117 lm/W	> 80
CF-Betrieb 10 %							
CLE AC 220mm 2500lm 830 ADV EM	830/359	240 lm	230 lm	13,5 mA	2,95 W	78 lm/W	> 80
CLE AC 220mm 2500lm 840 ADV EM	840/359	250 lm	240 lm	13,5 mA	2,95 W	82 lm/W	> 80
Notlichtbetrieb bei 350 mA							
CLE AC 220mm 2500lm 830 ADV EM	830/359	315 lm	300 lm	350,0 mA	-	-	> 80
CLE AC 220mm 2500lm 840 ADV EM	840/359	330 lm	315 lm	350,0 mA	_	_	> 80


[®] Toleranzbereich lichttechnische und elektrische Daten: ±10 %.

ACC COVER 220mm TRANSP

Produktbeschreibung

- Abdeckung für CLE AC 220mm
- Berührungsschutz von spannungsführenden Teilen
- Montage durch nicht lösbares Befestigungsmittel
- Hohe Transmission: 92 % für die transparente Version
- Material der Abdeckung: Polycarbonat

Bestelldaten

Typ Artikelnum		Farbe	Gewicht pro Stk.	
ACC COVER 220mm TRANSP	28001048	Transparent	10 Stk.	0,078kg

1. Normen

- EN 55015
- EN 61000-3-2
- EN 61547
- EN 62031
- EN 62471

1.1 Photometrischer Code

Schlüssel für den Photometrischen Code, z. B. 830 / 359

1. Stelle		2. Stelle + 3. Stelle	4. Stelle	5. Stelle	6. S	telle	
					Lichtstrom nach 25 % der		
Code	CRI			McAdam nach	Betriebsdauer (max. 6.000		
		Farbtemperatur in	McAdam	25 % der	Code	Lichtstrom	
7	70 – 79	Kelvin x 100	am Anfang	Betriebsdauer	7	≥ 70 %	
8	80 - 89			(max. 6.000 h)	8	≥ 80 %	
9	≥90				9	≥ 90 %	

2. Thermische Angaben

2.1 tc-Punkt, Umgebungstemperatur und Lebensdauer

Die Temperatur am tp-Punkt ist maßgebend für den Lichtstrom und die Lebensdauer eines LED-Produktes.

Für das CLE ist eine tp-Temperatur von $65\,^{\circ}$ C einzuhalten, um ein Optimum zwischen Kühlflächenbedarf, Lichtstrom und Lebensdauer zu erreichen.

Das Einhalten der zulässigen tc-Temperatur muss unter Betriebsbedingungen in thermisch eingeschwungenem Zustand überprüft werden. Dabei sind die Worst-case-Bedingungen der relevanten Anwendung zu berücksichtigen.

Die Messung der tc und tp Temperatur erfolgt bei LED Modulen von Tridonic am selben Referenzpunkt.

2.2 Lagerung und Luftfeuchtigkeit

Lagertemperatur	-30 +80°C

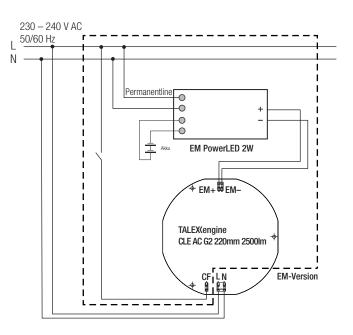
Betrieb nur unter nicht kondensierenden Umgebungsbedingungen. Beim Verbauen der Module sollte eine Luftfeuchtigkeit von 0 bis 70 % herrschen

2.3 Thermische Auslegung und Kühlfläche

Die Lebensdauer der LED-Produkte hängt stark von der Betriebstemperatur ab. Werden die zulässigen Temperaturgrenzwerte überschritten, so kommt es zu einer deutlichen Reduktion der Lebensdauer bzw. zu einer Zerstörung des CLE.

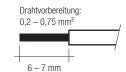
2.4 Kühlkörperangaben

CLE AC G2 220mm 2500lm


CLE AC GZ ZZOMM Z500IM								
ta	tp	R th, hs-a	Kühlfläche					
25 ℃	65 ℃	3,00 K/W	224 cm²					
35°C	65 ℃	2,25 K/W	299 cm²					
45 °C	65 ℃	1,50 K/W	449 cm²					
55 °C	65 ℃	0,75 K/W	898 cm ²					

Anmerkungen

Die tatsächliche Kühlfläche kann aufgrund des Materials, der Bauform, äußerer Einflüsse und der Einbaustiuation abweichen. Abhängig vom verwendeten Kühlkörper ist eine Wärmeleitpaste oder eine Wärmeleitfolie notwendig, um die geforderte tp-Temperatur einzuhalten.


3. Installation / Verdrahtung

3.1 Verdrahtung

3.2 Leitungsart und Leitungsquerschnitt

Zur Verdrahtung kann ein Voll- oder Litzendraht mit Leitungsquerschnitt von 0,2 bis $0,75\,\text{mm}^2$ verwendet werden. Für perfekte Funktion der Steckklemme Leitungen $6-7\,\text{mm}$ abisolieren.

Den Drücker der Klemme betätigen um flexible Leiter einzuführen oder die Klemme zu lösen.

3.3 Montagehinweis

Sämtliche Komponenten der CLE (LED, elektronische Bauteile usw.) dürfen keinen Zug- oder Druckbelastungen ausgesetzt werden.

Max. Drehmoment zur Befestigung: 0,5 Nm.

Die LED-Module werden jeweils mit 3 M4 Schrauben mit max. 7 mm Schraubenkopfdurchmesser auf einem Kühlkörper montiert. Um die Module nicht zu beschädigen, sollten hierfür nur Linsenkopfschrauben und eine zusätzliche Kunststoffunterlegscheibe verwendet werden.

Chemische Substanzen können das LED-Modul beschädigen. Chemische Reaktionen können zu Farbverschiebungen, Reduktion des Lichtstroms, aber auch zum Ausfall des Moduls durch angegriffene elektrische Verbindungen führen.

Materialien, welche in LED-Anwendungen verwendet werden (zum Beispiel Dichtungen, Kleber), dürfen nicht lösungsmittelbasiert, kondensationsvernetzt oder acetatvernetzt sein und keinen Schwefel, Chlor oder Phthalat enthalten.

Aggressive Dämpfe sowohl im Betrieb als auch während des Lagerns vermeiden.

3.4 Sicherheitshinweise

Es muss ein Schutz gegen direkte Berührung (Testfinger) des Moduls gewährleistet werden. Dies wird typischerweise mit einer nicht entfernbaren Optik über dem Modul gelöst.

3.5 EOS/ESD Sicherheitsrichtlinien

Das Gerät / Modul enthält Bauteile die auf elektrostatische Entladung empfindlich reagieren und darf nur bei Sicherstellung des EOS/ESD-Schutzes in der Fertigung und in der Anwendung eingebaut werden. Für Geräte/Module mit geschlossenem Gehäuse (keine Berührung auf Leiterplatte möglich) sind bei normaler Installationshandhabung keine Vorkehrungen notwendig. Bitte beachten Sie hierzu die Vorgaben aus dem Dokument EOS / ESD Richtlinien (Richtlinie_EOS_ESD.pdf) auf:

http://www.tridonic.com/esd-schutzmassnahmen

4. Lebensdauer

4.1 Lebensdauer, Lichtstromrückgang und Fehlerrate

Der Lichtstrom eines LED-Moduls nimmt über die Lebensdauer ab, dies wird über den L-Wert angegeben.

L70 bedeutet dass das LED-Modul 70 % des Ausgangslichtstroms abgibt. Dieser Wert steht immer im Zusammenhang mit einer Betriebsdauer und definiert die Lebensdauer des LED-Moduls.

Der L-Wert ist ein statistischer Wert, der tatsächliche Lichtstromrückgang kann über die gelieferten LED-Module variieren. Der B-Wert gibt daher an wieviele Module den gegebenen L-Wert unterschreiten. z.B. L70B10 bedeutet dass 10 % der LED-Module unter 70 % des Ausgangslichstromes sind bzw. 90 % über 70 % des Initialwerts. Zusätzlich wird mittels C-Wert der Prozentsatz der Totalausfälle (fatal failure) angegeben.

Der F-Wert beschreibt die Verknüpfung aus B- und C-Wert, d.h. es sind sowohl Totalausfälle wie auch Degradation berücksichtigt, z.B. L70F10 bedeutet dass 10 % der LED-Module ausgefallen sind oder einen Lichtrom unter 70 % des Intialwerts abgeben.

4.2 Lichstromrückgang CLE AC G2 220mm 2500lm

tp- Temperatur	L90 / F10	L90 / F50	L80 / F10	L80 / F50	L70 / F10	L70 / F50
45 °C	12.000 h	29.000 h	24.000 h	50.000 h	37.000 h	50.000 h
50 °C	9.000 h	21.000 h	18.000 h	41.000 h	28.000 h	50.000 h
55 °C	6.000 h	15.000 h	14.000 h	31.000 h	21.000 h	47.000 h
60 °C	5.000 h	11.000 h	10.000 h	23.000 h	16.000 h	36.000 h
65 °C	3.500 h	8.000 h	8.000 h	17.000 h	12.000 h	27.000 h
70 °C	2.500 h	6.000 h	5.000 h	13.000 h	9.000 h	20.000 h
75 °C	2.000 h	4.000 h	3.000 h	10.000 h	7.000 h	16.000 h

5. Elektrische Eigenschaften

5.1 Max. Belastung von Leitungsschutzautomaten

Sicherungsautomat	C10	C13	C16	C20	B10	B13	B16	B20	Einschaltstrom	
Installation Ø	1,5 mm ²	1,5 mm ²	1,5 mm ²	2,5 mm ²	1,5 mm ²	1,5 mm ²	1,5 mm ²	2,5 mm ²	I	Pulsdauer
CLE AC G2 220mm 2500lm	79	102	126	157	79	102	126	157	1,7 A	100 µs

5.2 Isolations- bzw. Spannungsfestigkeitsprüfung von Leuchten

Elektronische Betriebsgeräte für Leuchtmittel sind empfindlich gegenüber hohen Spannungen. Bei der Stückprüfung der Leuchte in der Fertigung muss dies berücksichtigt werden.

Gemäß IEC 60598-1 Anhang Q (nur informativ!) bzw. ENEC 303-Annex A sollte jede ausgelieferte Leuchte einer Isolationsprüfung mit 500 V $_{DC}$ während 1 Sekunde unterzogen werden.

Diese Prüfspannung wird zwischen den miteinander verbundenen Klemmen von Phase und Nullleiter und der Schutzleiteranschlussklemme angelegt. Der Isolationswiderstand muss dabei mindestens $2\,M\Omega$ betragen.

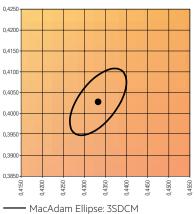
Alternativ zur Isolationswiderstandsmessung beschreibt IEC 60598-1 Anhang Q auch eine Spannungsfestigkeitsprüfung mit 1500 V $_{AC}$ (oder 1,414 x 1500 V $_{DC}$). Um eine Beschädigung von elektronischen Betriebsgeräten zu vermeiden, wird von dieser Spannungsfestigkeitsprüfung jedoch dringendst abgeraten.

5.3 AC-Betrieb

Netzspannung: 220–240 V 50/60 Hz 196–264 V 50/60 Hz für Sicherheit

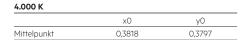
LED Kompakt

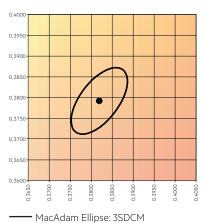
6. Photometrische Eigenschaften

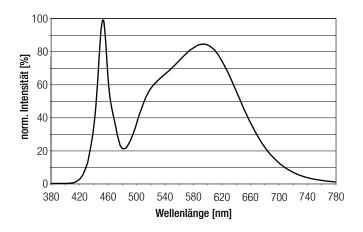

6.1 Koordinaten und Toleranzen nach CIE 1931

Die angegebenen Farbkoordinaten werden während eines Stromimpulses mit typischen Werten des Modules und einer Dauer von 100 ms integral gemessen. Die Umgebungstemperatur der Messung liegt bei ta = $25\,^{\circ}$ C.

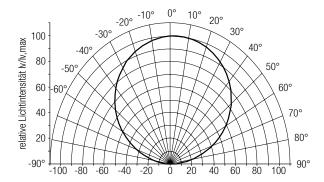
Die Messtoleranzen der Farbkoordinaten liegen bei ± 0,01.


6.2 Farbkoordinaten für LED-Modul ohne Gehäuse


3.000 K									
	хO	yО							
Mittelpunkt	0,4338	0,4030							



	100						$\overline{}$				
_	80					/					
ät [%]	-					/		\leftarrow			
ensit	60		٨		$\overline{}$			\top			
norm. Intensität [%]	40		Λ	_/				$\overline{}$			
ē	20								$\overline{}$		
		\mathcal{I}									
	380	420	460	500	540 Welle	580 nlänge	620 (nm)	660	700	740	780



6.3 Lichtverteilung

Das optische Design der CLE Produktreihe bietet höchstmögliche Homogenität der Lichtverteilung.

Die Farbortbestimmung erfolgt integral über das gesamte Modul. Die einzelnen LED-Lichtpunkte können unterschiedliche Farborte innerhalb einer MacAdam 3 aufweisen.

Für eine optimale Farbmischung und homogene Lichtverteilung ist eine

geeignete Optik (z. B. PMMA Diffusorplatte) und ein ausreichender Abstand (typ. 5 cm) zu dieser zu verwenden.

Für weitere Informationen siehe Design-in Guide, 3D-Daten und Photometrische Daten auf www.tridonic.com bzw. auf Anfrage.