
Konstantspannung

TRIDONIC

Driver LC 60W 48V SC SNC

Baureihe essence 48 V - nicht dimmbar (IP20)

Produktbeschreibung

- _ Konstantspannungs-LED-Treiber
- _ Ausgangsspannung 48 V
- _ Max. Ausgangsleistung 60 W
- Dimmbar mittels an der Ausgangsseite angeschlossenem externen PWM LED-Dimmer
- _ Für Leuchten der Schutzklasse I und der Schutzklasse II
- _ Anschluss von 48 V DC / DC-Boards ein / aus möglich
- _ In beiden Verpackungen ist die Zugentlastung enthalten. In der Einzelverpackung (SP) ist jeder Treiber noch einmal einzeln verpackt
- _ Nominale Lebensdauer bis zu 50.000 h
- _ 5 Jahre Garantie (Bedingungen siehe

https://www.tridonic.com/herstellergarantiebedingungen)

Typische Anwendung

_ Voutenbeleuchtung, Fassaden-Akzentbeleuchtung, indirekte Deckenbeleuchtung

Technische Details

- _ 48 V, 60 W
- $_$ Kleine Bauform (225 x 43 x 30,2 mm) mit Zugentlastung
- _ Ausgangsspannung NF Restwelligkeit (< 120 Hz) \pm 1,5 %
- _ Leistungsaufnahme im Stand-by < 0,5 W
- _ Kleiner Querschnitt
- _ Steckklemmen zur einfachen Verdrahtung

Systemlösung

- _ Tridonic LLE FLEX SNC4 und EXC4
- _ In Verbindung mit ACL FLEX Zubehörkabel zu PCB

Website

http://www.tridonic.com/87501095

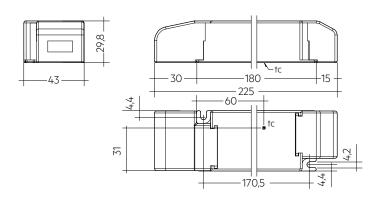
Halle

Downlights Lin

Fläche

Boden | Wand

Freistehend


Straf

Dekorativ

TRIDONIC

Driver LC 60W 48V SC SNC

Baureihe essence 48 V - nicht dimmbar (IP20)

Bestelldaten

Тур	Artikelnummer	Verpackung Karton	Verpackung Palette	Verpackung Großmengen	Gewicht pro Stk.	
Mehrfachverpackung						
LC 60W 48V SC SNC	87501095	10 Stk.	120 Stk.	1.200 Stk.	0,187 kg	
Einzelverpackung						
LC 60W 48V SC SNC SP	87501113	10 Stk.	80 Stk.	800 Stk.	0,187 kg	

Technische Daten
Netzspannungsbereich
Wechselspannungsberei

Netzspannungsbereich	220 – 240 V
Wechselspannungsbereich	198 – 264 V
Netzfrequenz	50 / 60 Hz
Überspannungsschutz	320 V AC, 48 h
Typ. Nennstrom (bei 230 V, 50 Hz, Volllast) ^①	290 mA
Max. Eingangsleistung	67 W
Typ. Wirkungsgrad (bei 230 V, 50 Hz, Volllast)	91,5 %
λ über gesamten Betriebsbereich (Maximum) ^①	0,98
λ über gesamten Betriebsbereich (Minimum)	0,8C
Typ. Eingangsstrom im Leerlauf	< 20 mA
Typ. Eingangsleistung im Leerlauf	< 0,5 W
Einschaltstrom (Spitze / Dauer)	32,3 A / 264 μs
THD (bei 230 V, 50 Hz, Volllast) ^①	< 10 %
Ausgang P_ST_LM (bei Volllast)	≤ 1
Ausgang SVM (bei Volllast)	≤ 0,4
Startzeit (bei 230 V, 50 Hz, Volllast) ^①	< 0,5 s
Abschaltzeit (bei 230 V, 50 Hz, Volllast)	< 0,5 s
Haltezeit bei Netzunterbrechung (Ausgang)	0 s
Ausgangsspannungstoleranz	± 2 V
Ausgangsspannung NF Restwelligkeit (< 120 Hz)	± 1,5 %
Max. Ausgangsspannung (U-OUT)	50 V
Burst-Festigkeit	1 kV
Stofsspannungsfestigkeit (zwischen L - N)	1 kV
Stoßspannungsfestigkeit (zwischen L/N - PE)	2 kV
Schutzart	IP20
Lebensdauer	bis zu 50.000 h
Garantie (Bedingungen siehe www.tridonic.com)	5 Jahr(e)
Abmessungen L x B x H	225 x 43 x 30 mm

Prüfzeichen

Normen

EN 55015, EN 61000-3-2, EN 61000-3-3, EN 61347-1, EN 61347-2-13, EN 62384, EN 61547, IEC 60335-1

Spezifische technische Daten

Тур	Last [©]	Ausgangsspannung	Ausgangsstrom	Max. Ausgangsleistung	Typ. Leistungsaufnahme	Typ. Stromaufnahme	tc Punkt max.	Umgebungstemperat ur ta
LC 60W 48V SC SNC	30 %	48 V	375 mA	18 W	21,0 W	101 mA	65 ℃	-20 +50 °C
LC 60W 48V SC SNC	40 %	48 V	500 mA	24 W	27,2 W	127 mA	75 °C	-20 +50 °C
LC 60W 48V SC SNC	50 %	48 V	625 mA	30 W	33,5 W	154 mA	75 °C	-20 +50 °C
LC 60W 48V SC SNC	60 %	48 V	750 mA	36 W	39,8 W	181 mA	75 °C	-20 +50 °C
LC 60W 48V SC SNC	70 %	48 V	875 mA	42 W	46,1 W	206 mA	85 °C	-20 +50 °C
LC 60W 48V SC SNC	80 %	48 V	1.000 mA	48 W	52,5 W	233 mA	85 °C	-20 +50 °C
LC 60W 48V SC SNC	90 %	48 V	1.125 mA	54 W	58,9 W	261 mA	85 °C	-20 +50 °C
LC 60W 48V SC SNC	100 %	48 V	1.250 mA	60 W	65,3 W	290 mA	85 °C	-20 +50 °C
LC 60W 48V SC SNC SP	30 %	48 V	375 mA	18 W	21,0 W	101 mA	65 ℃	-20 +50 °C
LC 60W 48V SC SNC SP	40 %	48 V	500 mA	24 W	27,2 W	127 mA	75 °C	-20 +50 °C
LC 60W 48V SC SNC SP	50 %	48 V	625 mA	30 W	33,5 W	154 mA	75 °C	-20 +50 °C
LC 60W 48V SC SNC SP	60 %	48 V	750 mA	36 W	39,8 W	181 mA	75 °C	-20 +50 °C
LC 60W 48V SC SNC SP	70 %	48 V	875 mA	42 W	46,1 W	206 mA	85 °C	-20 +50 °C
LC 60W 48V SC SNC SP	80 %	48 V	1.000 mA	48 W	52,5 W	233 mA	85 °C	-20 +50 °C
LC 60W 48V SC SNC SP	90 %	48 V	1.125 mA	54 W	58,9 W	261 mA	85 °C	-20 +50 °C
LC 60W 48V SC SNC SP	100 %	48 V	1.250 mA	60 W	65,3 W	290 mA	85 °C	-20 +50 °C

① Gültig bei 100 % Dimmlevel.
 ② Max. kapazitive Last 20 μF / A.

1. Normen

EN 55015

EN 61000-3-2

EN 61000-3-3

EN 61347-1

EN 61347-2-13

EN 62384

EN 61547

IEC 60335-1

1.1 Glühdrahttest

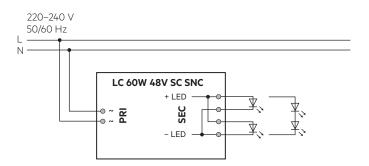
nach EN 61347-1 mit erhöhter Temperatur von 850 °C bestanden.

2. Thermische Angaben und Lebensdauer

2.1 Erwartete Lebensdauer

Erwartete Lebensdauer

Тур	Ausgangsleistung	ta	40 °C	45 °C	50 °C	
	> 10 ≤ 20 W	tc	55 °C	60 °C	65 ℃	
LC 60W 48V SC SNC	> 10 \(\frac{1}{2}\)	Lebensdauer	> 100.000 h	> 100.000 h	> 100.000 h	
	> 20 ≤ 40 W	tc	70 °C	70 °C	75 °C	
	> 20 \$ 40 W	Lebensdauer	> 100.000 h	> 100.000 h	> 75.000 h	
		tc	80 °C	85 °C	85 °C	
	> 40 ≤ 60 W	Lebensdauer	> 90.000 h	> 65.000h	> 50.000 h	


Das DC-Spannungsversorgungsgerät ist für die oben angegebene Lebensdauer ausgelegt, unter Nennbedingungen mit einer Ausfallwahrscheinlichkeit von kleiner 10 %.

Die Abhängigkeit des Punktes to von der Temperatur ta hängt auch vom Design der Leuchte ab. Liegt die gemessene Temperatur to etwa 5 K unter to max., sollte die Temperatur ta geprüft und schließlich die kritischen Bauteile (z.B. ELCAP) gemessen werden.

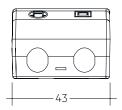
Detaillierte Informationen auf Anfrage.

3. Installation / Verdrahtung

3.1 Anschlussdiagramm

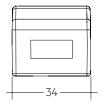
3.2 Leitungsart und Leitungsquerschnitt (Netzleitungen)

Zur Verdrahtung Litzendraht mit Aderendhülsen oder Volldraht von 0,5 – 1,5 mm² verwenden.

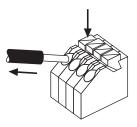

Für perfekte Funktion der Steckklemme (WAGO 250) Leitungen 8,5 – 9,5 mm abisolieren.

Nur einen Draht pro Anschlußklemme verwenden.

Netzleitungen:



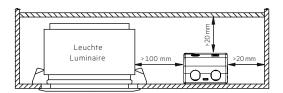
Primäre Zugentlastung für Kabel mit großerem Kabelmantel


Zulässiger Durchmesser des Kabelmantels: 2,2 – 9 mm

Sekundäre Zugentlastung für Kabel mit kleinerem Kabelmantel

Zulässiger Durchmesser des Kabelmantels: 3 – 9 mm

3.3 Lösen der Klemmverdrahtung



Lösen der Klemmenverdrahtung

Dazu den "Push-Button" an der Klemme betätigen und den Draht nach vorne abziehen.

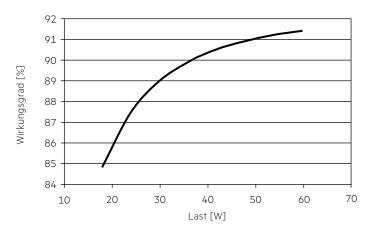
3.4 Einbaubedingungen bei Verwendung als unabhängiger Treiber mit Clip-On

Trocken; Säurefrei; Ölfrei; Fettfrei. Die am Gerät angegebene maximale Umgebungstemperatur (ta) darf nicht überschritten werden. Die unten angegebenen Mindestabstände sind Empfehlungen und von der eingesetzten Leuchte abhängig. Für die Montage direkt in der Ecke nicht geeignet.

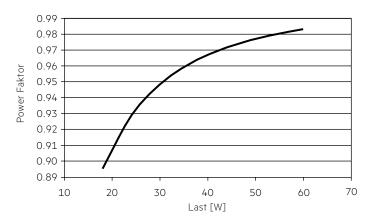
3.5 Verdrahtungsrichtlinien

- Die sekundären Leitungen sollten für ein gutes EMV-Verhalten getrennt von den Netzanschlüssen und -leitungen geführt werden.
- Für ein gutes EMV-Verhalten sollte die LED-Verdrahtung so kurz wie möglich gehalten werden. Die max. sekundäre Leitungslänge beträgt 2 m (4 m Schleife).
- Zur Einhaltung der EMV Vorschriften sekundäre Leitungen (LED Modul) parallel führen.
- Der LED-Treiber besitzt keinen sekundärseitigen Verpolschutz. LED-Module, welche keinen Verpolschutz aufweisen, können bei Verpolung zerstört werden.
- Falsche Verdrahtung des LED-Treibers kann zu irreparablen Schäden führen und eine richtige Funktion ist nicht mehr gegeben.
- Um Geräteausfälle durch Masseschlüsse zu vermeiden, muss die Verdrahtung vor mechanischer Belastung mit scharfkantigen Metallteilen (z.B. Leitungsdurchführung, Leitungshalter, Metallraster, etc.) geschützt werden.

3.6 Installationshinweis

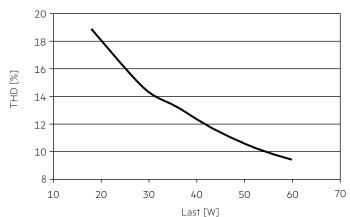

Das LED-Modul und alle Kontaktstellen innerhalb der Verdrahtung ausreichend gegen 3 kV Überspannung isolieren. Luft- und Kriechstrecke einhalten.

3.7 Gerätebefestigung


Max. Drehmoment für die Befestigung: 0,5 Nm/M4

4. Elektr. Eigenschaften

4.1 Verhältnis Effizienz zu Last



4.2 Verhältnis PF-Wert zu Last

4.3 Verhältnis THD zu Last

THD ohne Oberwellen < 5 mA (0,6 %) des Eingangsstromes:

4.4 Maximale Belastung von Leitungsschutzautomaten bezogen auf den Einschaltstrom

Sicherungsautomat	C10	C13	C16	C20	B10	B13	B16	B20	Einschaltstrom	
Installation Ø	1,5 mm ²	1,5 mm ²	2,5 mm ²	2,5 mm ²	1,5 mm ²	1,5 mm ²	2,5 mm ²	2,5 mm ²	l _{max}	Pulsdauer
LC 60W 48V SC SNC	15	18	23	28	9	11	14	17	32,3 A	264 µs

Dies sind max. Werte, die aus dem Einschaltstrom berechnet werden! Achten sie darauf, den max. Nenndauerstrom des Leitungsschutzautomaten nicht zu überschreiten. Kalkulation verwendet typische Werte der Leitungsschutzautomaten-Serie ABB S200 als Referenz.

Tatsächliche Werte können je nach verwendeten Leitungsschutzautomatentypen und der Installationsumgebung abweichen.

4.5 Oberwellengehalt des Netzstromes (bei 230 V / 50 Hz und Volllast) in %

	THD	3.	5.	7.	9.	11.
LC 60W 48V SC SNC	< 10	< 10	< 5	< 5	< 2	< 2

Gemäß 61000-3-2. Oberwellen < 5 mA oder < 0,6 % (welcher auch immer größer ist) des Eingangsstromes werden nicht für die Berechnung vom THD berücksichtigt.

5. Funktionen

5.1 Überlastschutz

Wird die maximale Last um einen definierten internen Grenzwert überschritten, flackert die LED und die Ausgangsspannung wird reduziert. Nach Behebung der Überlast erfolgt eine automatische Rückkehr in den nominalen Betrieb, ohne das die Netzspannung unterbrochen wird.

5.2 Übertemperaturschutz

Der LED-Treiber ist vor einer thermischen Überhitzung geschützt. Wenn die Temperaturgrenze überschritten wird, flackert die LED, wenn der Treiber abgekühlt ist, dann startet er automatisch wieder. Der Temperaturschutz ist ab ca. + 15 °C über tc max aktiv.

5.3 Verhalten bei Kurzschluss

Im Falle eines Kurzschlusses am LED-Ausgang wird der LED-Ausgangs abgeschaltet. Nach Behebung des Kurzschlusses erfolgt eine automatische Rückkehr in den nominalen Betrieb, ohne das die Netzspannung unterbrochen wird.

5.4 Verhalten bei Leerlauf

Der LED-Treiber wird im Leerlauf nicht beschädigt. Bei offenem LED-Ausgang liegt am Ausgang die max. Spannung an (< 50 V). Nach dem Anschließen der LED-Last erfolgt eine automatische Rückkehr in den nominalen Betrieb, ohne das die Netzspannung unterbrochen wird.

5.5 Hot-Plug-In

Hot-Plug-In wird unterstützt.

Bei Anschluss einer LED-Last, das Gerät neu starten, damit der LED-Ausgang aktiviert wird.

5.6 Verwendung eines PWM-Dimmers

PWM-Dimmer kann verwendet werden, um das angeschlossene LED-Modul zu dimmen.

7. Sonstiges

7.1 Isolations- bzw. Spannungsfestigkeitsprüfung von Leuchten

Elektronische Betriebsgeräte für Leuchtmittel sind empfindlich gegenüber hohen Spannungen. Bei der Stückprüfung der Leuchte in der Fertigung muss dies berücksichtigt werden.

Gemäß IEC 60598-1 Anhang Q (nur informativ!) bzw. ENEC 303-Annex A sollte jede ausgelieferte Leuchte einer Isolationsprüfung mit 500 V $_{DC}$ während 1 Sekunde unterzogen werden.

Diese Prüfspannung wird zwischen den miteinander verbundenen Klemmen von Phase und Neutralleiter und der Schutzleiteranschlussklemme angelegt. Der Isolationswiderstand muss dabei mindestens $2\,\mathrm{M}\Omega$ betragen.

Alternativ zur Isolationswiderstandsmessung beschreibt IEC 60598-1 Anhang Q auch eine Spannungsfestigkeitsprüfung mit 1500 V $_{AC}$ (oder 1,414 \times 1500 V $_{DC}$). Um eine Beschädigung von elektronischen Betriebsgeräten zu vermeiden, wird von dieser Spannungsfestigkeitsprüfung jedoch dringendst abgeraten.

7.2 Bedingungen für Lagerung und Betrieb

Luftfeuchtigkeit: 5 % bis max. 85 %,

nicht kondensierend (max. 56 Tage/Jahr bei 85 %)

Lagertemperatur: -40 °C bis max. +80 °C

Bevor die Geräte in Betrieb genommen werden, müssen sie sich wieder innerhalb des spezifizierten Temperaturbereiches (ta) befinden.

Der LED-Treiber ist ein Einbau-Betriebsgerät und damit für die Verwendung in Leuchten bestimmt.

Wird das Produkt außerhalb einer Leuchte verwendet, muss in der Installation ein geeigneter Schutz von Personen und Umgebung vorgesehen werden (z.B. bei Lichtdecken).

7.3 Maximale Anzahl an Schaltzyklen

Alle LED-Treiber werden mit 50.000 Schaltzyklen geprüft.

7.4 Zusätzliche Informationen

weitere technische Informationen auf <u>www.tridonic.com</u> \rightarrow Technische Daten

Lebensdauerangaben sind informativ und stellen keinen Garantieanspruch dar. Keine Garantie wenn das Gerät geöffnet wurde!