TRIDONIC

Driver LCI 150W 325-1050mA 300V o4a sl PRE mod (INDUSTRY)

Baureihe premium non-SELV

Produktbeschreibung

- _ NEU: lumDATA (DALI-2 Teil 251, 252 und 253)
- Konstantstrom-LED-Treiber für den Leuchteneinbau, besonders geeignet für industrielle Anwendungen in rauen Umgebungen mit erhöhten Umgebungstemperaturen, wie zum Beispiel Kaltlagerhallen oder Fabriken
- _ Dimmbereich von 1 100 %
- _ Ausgangsstrom einstellbar zwischen 325 1.050 mA
- _ Max. Ausgangsleistung 150 W
- _ Spannungsspitzentauglich (Burst/Surge) bis zu 4 kV
- _ Erweiterter Temperaturbereich von -25 ... +50 °C
- _ Nominale Lebensdauer bis zu 100.000 h (bei ta 50 °C)
- _ 5 Jahre Garantie (Bedingungen siehe

https://www.tridonic.com/herstellergarantiebedingungen)

Gehäuse-Eigenschaften

- _ Weißes "slim"-Metallgehäuse
- _ Schutzart IP20

Schnittstellen

- _ one4all (DALI-2 DT 6, DSI, switchDIM, corridorFUNCTION V2)
- _ ready2mains (Konfigurieren und Dimmen über Netz)
- _ Klemmen: 0° Steckklemmen

Funktionen

- _ Einstellbarer Ausgangsstrom in 1-mA-Schritten (I-SELECT Widerstand oder eD)
- _ Erfüllt die DALI-2 Teile: 251 (Leuchtendaten), 252 (Energiebericht) und 253 (Diagnose & Wartung)
- Constant Light Output Funktion (CLO)
- _ Power-up Fading bei AC
- _ Intelligent Temperature Guard (thermische Schutzvorrichtung)
- _ Intelligent Voltage Guard (Überspannungs- und Unterspannungsüberwachung)
- Schutzfunktionen (Übertemperatur, Kurzschluss, Überlast, Leerlauf, Eingangsspannungsbereich)
- _ Geeignet für Sicherheitsbeleuchtungsanlagen gemäß EN 50172

Vorteile

- _ Anwendungsorientiertes Betriebsfenster für max. Kompatibilität
- _ Hohe Energieeinsparungen durch geringe Stand-by-Verluste
- _ Flexible Konfiguration über DALI, ready2mains und I-SELECT 2
- _ Verbesserte Vibrationseigenschaft
- Erhöhte Sicherheit durch robustes Design und erweiterte Testvorgänge unter extremen Testbedingungen
- _ Hohe Verlässlichkeit durch die Auswahl exklusiver Komponenten

Typische Anwendung

_ Für Linear- und Flächenbeleuchtung in Industrieanwendungen

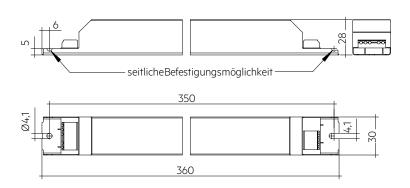
http://www.tridonic.com/28002054

Linear

Fläche

Boden | Wand

Freistehend



Driver LCI 150W 325-1050mA 300V o4a sl PRE mod (INDUSTRY)

Baureihe premium non-SELV

Bestelldaten

Тур	Artikelnummer	Verpackung Karton	Verpackung Palette	Gewicht pro Stk.
LCI 150/325-1050/300 o4a sl PRE mod	28002054	10 Stk.	550 Stk.	0,321 kg
Technische Daten				
Netzspannungsbereich	220 – 240 V			
Wechselspannungsbereich	198 – 264 V			
Gleichspannungsbereich	176 – 280 V			
Netzfrequenz	0 / 50 / 60 Hz			
Überspannungsschutz	320 V AC, 48 h			
Typ. Nennstrom (bei 230 V, 50 Hz, Volllast) [©]	681 mA			
Typ. Strom (220 V, 0 Hz, Volllast, 15 % Dimmlevel) [©]	119 mA			
Ableitstrom (bei 230 V, 50 Hz, Volllast) 👓	< 250 μA			
Max. Eingangsleistung	157,1 W			
Typ. Wirkungsgrad (bei 230 V, 50 Hz, Volllast) [©]	95 %	<u> </u>		
A (bei 230 V, 50 Hz, Volllast)	0,98			
Typ. Leistungsaufnahme im Stand-by [®]	< 0,25 W			
Typ. Eingangsstrom im Leerlauf	78 mA			
Typ. Eingangsleistung im Leerlauf	0,54 W			
Einschaltstrom (Spitze / Dauer)	17,7 A / 162 μs			
THD (bei 230 V, 50 Hz, Volllast) ^①	< 4 %			
Startzeit (bei 230 V, 50 Hz, Volllast) ^①	< 0,6 s			
Startzeit (DC-Betrieb)	< 0,4 s			
Umschaltzeit (AC/DC) ⁽⁴⁾	< 0,4 s			
Abschaltzeit (bei 230 V, 50 Hz, Volllast)	< 2,4 ms			
Ausgangsstromtoleranz ®	± 3 %			
Max. Ausgangsstromspitze (nicht wiederkehrend)	≤ Ausgangsstrom + 30 %			
Ausgangsstrom NF Restwelligkeit (< 120 Hz)	± 2 %			
Ausgang P_ST_LM (bei Volllast)	≤ 1			
Ausgang SVM (bei Volllast)	≤ 0,4			
Max. Ausgangsspannung (U-OUT)	350 V			
Dimmbereich	1 – 100 %			
Stoßspannungsfestigkeit (zwischen L - N)	4 kV			
Stoßspannungsfestigkeit (zwischen L/N - PE)	4 kV			
Stoßspannung ausgangsseitig (gegen PE)	4 kV			
Schutzart	IP20			
Lebensdauer	bis zu 100.000 h	<u> </u>	·	
Garantie (Bedingungen siehe www.tridonic.com)	5 Jahr(e)			
Abmessungen L x B x H	360 x 30 x 28 mm			

Prüfzeichen

Normen

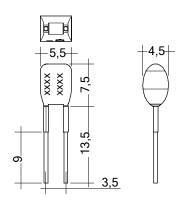
EN 55015, EN 60068-2-27, EN 60068-2-64, EN 61000-3-2, EN 61000-3-3, EN 61347-2-13, EN 62384, EN 61547, EN 62386-101, EN 62386-102, EN 62386-207 (DALI-2), gemäß EN 50172, gemäß EN 60598-2-22

Spezifische technische Daten

Q.Y.	Ausgangsstrom ®®	Min. Ausgangsspannung	Max. Ausgangsspannung	Max. Ausgangsleistung	Typ. Leistungsaufnahme (bei 230 V, 50 Hz, Volllast)	Typ. Stromaufnahme (bei 230 V, 50 Hz, Volllast)	tc Punkt max.	Umgebungstemperat ur ta	I-SELECT 2 Widerstandswert [©]
LCI 150/325-1050/300 o4a sl PRE mod	325 mA	80 V	300 V	97,5 W	101,2 W	447 mA	68 °C	-25 +50 °C	-
LCI 150/325-1050/300 o4a sl PRE mod	400 mA	80 V	300 V	120,0 W	124,3 W	546 mA	68 °C	-25 +50 °C	12,50 kΩ
LCI 150/325-1050/300 o4a sl PRE mod	450 mA	80 V	300 V	135,0 W	139,7 W	611 mA	68 °C	-25 +50 °C	11,11 kΩ
LCI 150/325-1050/300 o4a sl PRE mod	500 mA	80 V	300 V	150,0 W	155,1 W	677 mA	68 °C	-25 +50 °C	10,00 kΩ
LCI 150/325-1050/300 o4a sl PRE mod	550 mA	80 V	273 V	150,0 W	155,2 W	678 mA	70 °C	-25 +50 °C	9,09 kΩ
LCI 150/325-1050/300 o4a sl PRE mod	600 mA	80 V	250 V	150,0 W	155,4 W	679 mA	70 °C	-25 +50 °C	8,33 kΩ
LCI 150/325-1050/300 o4a sl PRE mod	650 mA	80 V	231 V	150,0 W	155,5 W	679 mA	70 °C	-25 +50 °C	7,69 kΩ
LCI 150/325-1050/300 o4a sl PRE mod	700 mA	80 V	214 V	150,0 W	155,7 W	680 mA	70 °C	-25 +50 °C	7,14 kΩ
LCI 150/325-1050/300 o4a sl PRE mod	750 mA	80 V	200 V	150,0 W	155,8 W	681 mA	70 °C	-25 +50 °C	6,67 kΩ
LCI 150/325-1050/300 o4a sl PRE mod	800 mA	80 V	188 V	150,0 W	156,0 W	682 mA	70 °C	-25 +50 °C	6,25 kΩ
LCI 150/325-1050/300 o4a sl PRE mod	850 mA	80 V	176 V	150,0 W	156,2 W	683 mA	70 °C	-25 +50 °C	5,88 kΩ
LCI 150/325-1050/300 o4a sl PRE mod	900 mA	80 V	167 V	150,0 W	156,5 W	684 mA	72 °C	-25 +50 °C	5,56 kΩ
LCI 150/325-1050/300 o4a sl PRE mod	950 mA	80 V	158 V	150,0 W	156,7 W	684 mA	72 °C	-25 +50 °C	5,26 kΩ
LCI 150/325-1050/300 o4a sl PRE mod	1.000 mA	80 V	150 V	150,0 W	156,9 W	685 mA	72 °C	-25 +50 °C	5,00 kΩ
LCI 150/325-1050/300 o4a sl PRE mod	1.050 mA	80 V	143 V	150,0 W	157,1 W	686 mA	72 °C	-25 +50 °C	0,00 kΩ

<sup>Gültig bei 100 % Dimmlevel.
Abhängig vom eingestellten Ausgangsstrom.
Abhängig vom DALI-Datenverkehr am Interface.
Gültig bei sofortiger Änderung der Stromversorgungsart, ansonsten gilt die Startzeit.</sup>

⑤ Ausgangsstrom ist Mittelwert.


[®] Die Tabelle enthält eine Auswahl an Betriebspunkten, deckt aber nicht jeden Betriebspunkt ab. Der Ausgangsstrom kann innerhalb des Strombereiches in 1-mA-Schritten eingestellt werden.

 $[\]ensuremath{{\mathbb C}}$ Nicht kompatibel mit I-SELECT (Generation 1). Kalkulierter Widerstandswert.

I-SELECT 2 PLUG PRE / EXC

ubehör

Produktbeschreibung

- _ Vorgefertigter Widerstand für Stromeinstellung
- _ Kompatibel mit LED-Treiber mit I-select 2 Interface; nicht kompatibel mit I-SELECT (Generation 1)
- _ Widerstand ist basisisoliert
- _ Widerstandsleistung 0,25 W
- _ Stromtoleranz ± 2 % zusätzlich zur Ausgangsstromtoleranz
- _ Kompatibel mit LED-Treiber der Serien PRE und EXC

Berechnungsbeispiel

- $R [k\Omega] = 5 V / I_out [mA] x 1000$
- _ Verwendung von E96 Widerständen
- _ Widerstandstoleranz 1 %; Leistung 0.1 W; Basisisolierung erforderlich
- _ Wird ein Widerstandswert außerhalb des spezifizierten Bereiches verwendet, so wird automatisch der Minimal-Strom (bei zu großem Widerstandswert) bzw. der Maximum-Strom (bei zu kleinem Widerstandwert) eingestellt

Website

http://www.tridonic.com/28001109

Bestelldaten

Тур	Artikelnummer	Farbe	Kennzeichnung	Strom	Widerstandswert	Verpackung Sack	Gewicht pro Stk.
I-SELECT 2 PLUG 325MA BL	28001109	Blau	0325 mA	325 mA	15,40 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 350MA BL	28001110	Blau	0350 mA	350 mA	14,30 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 375MA BL	28001111	Blau	0375 mA	375 mA	13,30 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 400MA BL	28001112	Blau	0400 mA	400 mA	12,40 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 425MA BL	28001251	Blau	0425 mA	425 mA	11,80 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 450MA BL	28001113	Blau	0450 mA	450 mA	11,00 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 475MA BL	28001252	Blau	0475 mA	475 mA	10,50 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 500MA BL	28001114	Blau	0500 mA	500 mA	10,00 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 525MA BL	28001960	Blau	0525 mA	525 mA	9,53 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 550MA BL	28001115	Blau	0550 mA	550 mA	9,09 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 600MA BL	28001116	Blau	0600 mA	600 mA	8,25 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 650MA BL	28001117	Blau	0650 mA	650 mA	7,68 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 700MA BL	28001118	Blau	0700 mA	700 mA	7,15 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 750MA BL	28001119	Blau	0750 mA	750 mA	6,65 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 800MA BL	28001120	Blau	0800 mA	800 mA	6,19 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 850MA BL	28001121	Blau	0850 mA	850 mA	5,90 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 900MA BL	28001122	Blau	0900 mA	900 mA	5,62 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 950MA BL	28001123	Blau	0950 mA	950 mA	5,23 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 1000MA BL	28001124	Blau	1000 mA	1.000 mA	4,99 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 1050MA BL	28001125	Blau	1050 mA	1.050 mA	4,75 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG MAX BL	28001099	Blau	MAX	MAX	0,00 kΩ	10 Stk.	0,001 kg

1. Normen

EN 55015

EN 60068-2-27 (Stofy – Testfall: 1.000 Stöße in 6 Richtungen mit 30 g / 18 ms)

EN 60068-2-64 (Vibration – Testfall: gemäß Tabelle A.1 Transport / Kategorie 2)

EN 61000-3-2

EN 61000-3-3

EN 61347-1

EN 61347-2-13

EN 62384

EN 61547

EN 62386-101 (DALI-2)

EN 62386-102 (DALI-2)

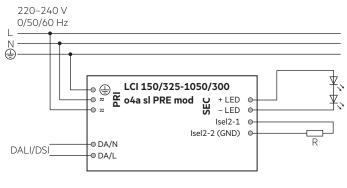
EN 62386-207 (DALI-2, inkl. Teil 251, 252, 253)

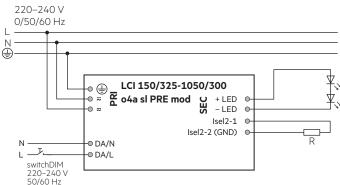
Gemäß EN 50172 für Zentralbatterieanlagen geeignet

Gemäß EN 60598-2-22 für Notlichtinstallation geeignet

2. Thermische Angaben und Lebensdauer

2.1 Erwartete Lebensdauer

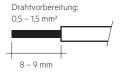

Тур	Ausgangsstrom	ta	40 °C	45 °C	50 °C	
LCI 150/325-1050/300 o4a sl PRE mod .	325 – 500 mA	tc	68 °C			
	325 - 300 MA	Lebensdauer	>100.000 h	>100.000 h	>100.000 h	
	. 500 050 4	tc	62 °C	66 ℃	70 °C	
	>500 – 850 mA	Lebensdauer	c 60 °C 62 °C Lebensdauer >100.000 h >100.000 h c 62 °C 66 °C Lebensdauer >100.000 h >100.000 h c 63 °C 67 °C			
	050 4050 4	tc	63 °C	67 °C	72 °C	
	>850 – 1.050 mA	Lebensdauer	>100.000 h	>100.000 h	80.000 h	


Der LED-Treiber ist für die oben angegebene Lebensdauer ausgelegt, unter Nennbedingungen mit einer Ausfallwahrscheinlichkeit von kleiner 10 %.

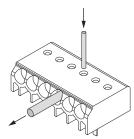
Die Abhängigkeit des Punktes to von der Temperatur ta hängt auch vom Design der Leuchte ab. Liegt die gemessene Temperatur to etwa 5 K unter to max., sollte die Temperatur ta geprüft und schließlich die kritischen Bauteile (z.B. ELCAP) gemessen werden. Detaillierte Informationen auf Anfrage.

3. Installation / Verdrahtung

3.1 Anschlussdiagramm



 $\label{thm:condition} Verdrahtung \ f\"{u}r\ Dimmbetrieb\ mit\ ready2 mains\ siehe\ ready2 mains\ Gateway-Datenblatt.$


3.2 Leitungsart und Leitungsquerschnitt

Zur Verdrahtung ein Volldraht von 0,5 bis 1,5 mm² verwenden. Für perfekte Funktion der Steckklemme Leitungen 8 – 9 mm abisolieren.

LED-Modul/LED-Treiber/Spannungsversorgung

3.3 Lösen der Klemmverdrahtung

Draht lösen durch Drehen und Ziehen oder Verwendung eines Lösewerkzeugs Ø 1 mm

3.4 Verdrahtungsrichtlinien

- Die sekundären Leitungen getrennt von den Netzanschlüssen und -leitungen führen, um ein gutes EMV-Verhalten zu erreichen.
- Die max. sekundäre Leitungslänge beträgt 2 m (4 m Schleife), das gilt für den LED-Ausgang und auch für den I-SELECT 2 Widerstand.
- Für ein gutes EMV-Verhalten die LED-Verdrahtung so kurz wie möglich halten.
- · Sekundäres Schalten ist nicht zulässig.
- Der LED-Treiber besitzt keinen sekundärseitigen Verpolschutz. LED-Module, welche keinen Verpolschutz aufweisen, können bei Verpolung zerstört werden.
- Falsche Verdrahtung des LED-Treibers kann zu irreparablen Schäden führen und eine richtige Funktion ist nicht mehr gegeben.
- Bei Netztransienten von 4 kV können am Ausgang des LED-Treibers Spannungsspitzen bis zu 4 kV gegen PE auftreten. Dies ist bei der Spannungsfestigkeit des LED-Modules zu berücksichtigen (Isolation gegen PE).
- Um Geräteausfälle durch Masseschlüsse zu vermeiden, muss die Verdrahtung vor mechanischer Belastung mit scharfkantigen Metallteilen (z.B. Leitungsdurchführung, Leitungshalter, Metallraster, etc.) geschützt werden.

3.5 Anschließen des LED-Moduls im Betrieb

Anschließen des LED-Moduls während des Betriebs ist nicht zulässig, da eine Ausgangsspannung > 0 V anliegen kann.

Bei Anschluss einer LED-Last, das Gerät neu starten, damit der LED-Ausgang aktiviert wird. Dies kann durch Aus- und Einschalten des LED-Betriebsgerätes sowie per DALI, DSI, switchDIM oder ready2mains erfolgen.

3.6 Erdanschluss

Der Erdanschluss ist als Schutzerde ausgeführt. Der LED-Treiber kann mittels Erdklemme oder über das Metallgehäuse geerdet werden. Wird der LED-Treiber geerdet, muss dies mit Schutzerde (PE) erfolgen. Für die Funktion des LED-Treibers ist keine Erdung notwendig.

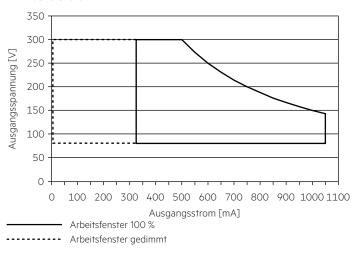
Zur Verbesserung von folgendem Verhalten wird ein Erdanschluss empfohlen:

- Funkstörung
- LED Restglimmen im Stand-by
- Übertragung von Netztransienten an den LED Ausgang

Generell ist es empfehlenswert bei Modulen, die auf geerdeten Leuchtenteilen bzw. Kühlkörpern montiert sind und dadurch eine hohe Kapazität gegenüber Erde darstellen, auch den LED-Treiber zu erden.

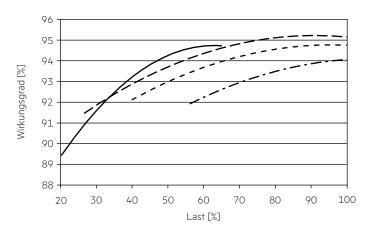
3.7 I-Select 2 Widerstände verbinden mittels Kabel

Für Details siehe:

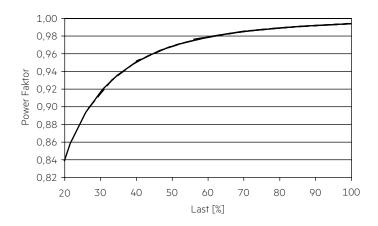

 $http://www.tridonic.com/com/de/download/technical/LCA_PRE_LC_EXC_Produkthandbuch_de.pdf.$

3.8 Gerätemontage

Für die Montage des Geräts sollten Unterlegscheiben mit einem Außendurchmesser von 10 mm verwendet werden. Die Anzugskraft der M4 Schraube sollte 3.5 NM betragen.

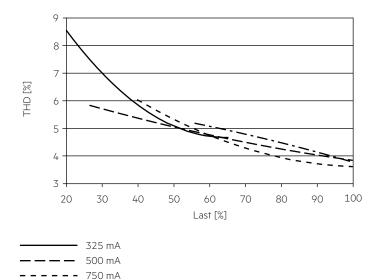

4. Elektr. Eigenschaften

4.1 Arbeitsfenster



Es ist sicherzustellen, dass der LED-Treiber ausschließlich innerhalb des gezeigten Arbeitsfensters betrieben wird. Besondere Aufmerksamkeit ist dem gedimmten Betrieb sowie dem DC- und Notlichtbetrieb zu widmen, da aufgrund der verwendeten Amplituden-Dimmung die Modulspannung mit dem Dimm-Level variiert. Eine Unterschreitung der spezifizierten minimalen Ausgangsspannung des LED-Treibers kann zur Abschaltung führen. Siehe Abschnitt "6.11 Lichtlevel im DC-Betrieb" für mehr Informationen.

4.2 Verhältnis Effizienz zu Last



4.3 Verhältnis Power Faktor zu Last

4.4 Verhältnis THD zu Last

--- 1050 mA

 $100\ \%$ Last entsprechen der max. Ausgangsleistung (Volllast) gemäß der Tabelle auf Seite 2.

4.5 Maximale Belastung von Leitungsschutzautomaten bezogen auf den Einschaltstrom

Sicherungsautomat	C10	C13	C16	C20	B10	B13	B16	B20	Einsch	naltstrom
Installation Ø	1,5 mm ²	1,5 mm ²	2,5 mm ²	4 mm ²	1,5 mm ²	1,5 mm ²	2,5 mm ²	4 mm²	l max	Pulsdauer
LCI 150/325-1050/300 o4a sl PRE mod	28	33	36	41	17	20	22	25	17,7 A	162 µs

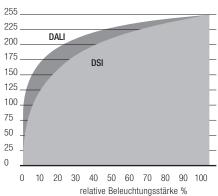
Dies sind max. Werte, die aus dem Einschaltstrom berechnet werden! Achten sie darauf, den max. Nenndauerstrom des Leitungsschutzautomaten nicht zu überschreiten. Kalkulation verwendet typische Werte der Leitungsschutzautomaten-Serie ABB S200 als Referenz.

Tatsächliche Werte können je nach verwendeten Leitungsschutzautomatentypen und der Installationsumgebung abweichen.

4.6 Oberwellengehalt des Netzstromes (bei 230 V / 50 Hz und Volllast) in %

	THD	3.	5.	7.	9.	11.
LCI 150/325-1050/300 o4a sl PRE mod	< 4	< 1	< 4	< 1	< 1	< 1

4.7 Dimmbetrieb


Dimmbereich 1% bis 100 % Digitale Ansteuerung mittels:

- DSI-Signal: 8 Bit Manchester Code Maximale Dimmgeschwindigkeit 1% bis 100 % in 1.4 s
- DALI-Signal: 16 Bit Manchester Code Maximale Dimmgeschwindigkeit 1% bis 100% in 0,2 s
 Die Programmierung des minimalen und maximalen Dimmlevels ist möglich Werkseinstellung Minimum = 1%
 Einstellbereich 1% ≤ MIN ≤ 100%
 Werkseinstellung Maximum = 100%
 Einstellbereich 100% ≥ MAX ≥ 1%

Der Augenempfindlichkeit angepasster Dimmverlauf. Das Dimmen wird mittels Amplituden-Dimming realisiert.

4.8 Dimmcharakteristik

Dimmcharakteristik entspricht der Sehempfindlichkeit des menschlichen Auges.

5. Schnittstellen / Kommunikation

5.1 Steuereingang (DA/N, DA/L)

An den Klemmen DA/N und DA/L kann wahlweise das digitale Steuersignal DALI oder ein Standardtaster (switchDIM) zur Ansteuerung angeschlossen werden.

Der Steuereingang ist verpolungssicher für digitale Steuersignale (DALI, DSI). Das Steuersignal ist keine SELV-Spannung. Die Installation der Steuerleitung ist entsprechend den Richtlinien für Niederspannung auszuführen. Die möglichen Funktionen sind vom jeweiligen Steuermodul abhängig.

5.2 Steuereingang ready2mains (L, N)

Das digitale Steuersignal ready2mains wird direkt auf die Netzspannung moduliert und an die Netzklemmen verdrahtet (L und N).

5.3 switchDIM

Die integrierte switchDIM-Funktion ermöglicht den direkten Anschluss eines Standard-Tasters zum Dimmen und Schalten.

Ein kurzer Tastendruck (< 0,6 s) schaltet die angeschlossenen LED-Module ein bzw. aus. Der zuletzt eingestellte Dimmwert wird nach dem Einschalten wieder aufgerufen.

Ein anhaltender Tastendruck dimmt die LED-Module solange der Taster gedrückt ist. Nach Loslassen und erneuter Betätigung ändert sich die Dimmrichtung.

Für den Fall, dass LED-Module auf unterschiedlichen Dimmwerten starten oder mit gegenläufiger Dimmrichtung arbeiten (z.B. nachträgliche Installation), können alle Geräte durch einen 10 s anhaltenden Tastendruck auf 50 % Dimmwert synchronisiert werden.

Taster mit Glimmlampen dürfen nicht verwendet werden.

6. Funktionen

6.1 Funktion: Einstellbarer Strom

Der Ausgangsstrom des LED-Treibers kann in einem vorgegebenen Bereich eingestellt werden. Zur Einstellung stehen drei Optionen zur Verfügung.

Option 1: DALI

Die Konfiguration erfolgt mittels masterCONFIGURATOR (siehe masterCONFIGURATOR Dokumentation).

Option 2: I-SELECT 2

. Die Stromeinstellung erfolgt über einen passenden I-SELECT 2 Widerstand, welcher in die I-SELECT 2 Klemmen eingesteckt wird.

Die mathematische Beziehung zwischen Ausgangsstrom und Widerstandswert wird in der Produktbeschreibung "Zubehör I-SELECT 2 PLUG" erläutert.

Bitte beachten Sie, dass die Widerstandswerte für I-SELECT 2 nicht mit I-SELECT 1 kompatibel sind. Aus der Installation eines falschen Widerstands können möglicherweise irreparable Schäden an den LED-Modulen entstehen.

Widerstände für die wichtigsten Ausgangsstromwerte können von Tridonic bezogen werden (siehe Zubehör).

Option 3: ready2mains

Die Konfiguration erfolgt mittels optionalem Programmer und der entsprechenden Konfigurationssoftware über die ready2mains Schnittstelle.

DALI wird bei der Stromeinstellung vorrangig behandelt, gefolgt von I-Select 2 und ready2mains.

6.2 ready2mains - Konfiguration

Die Hauptparameter von LED-Treibern, wie LED-Ausgangsstrom, CLO und DC-Level, können mithilfe der ready2mains Schnittstelle über die Netzverdrahtung konfiguriert werden.

Dabei können die Parameter entweder über ready2mains-fähige Konfigurationssoftware oder direkt über den ready2mains Programmer eingestellt werden (nur Ausgangsstrom).

6.3 ready2mains - Dimming

ready2mains ermöglicht das Dimmen von Gruppen über die Netzverdrahtung, welches über das ready2mains Protokoll und entsprechende Dimming-Schnittstellen (Gateways) gesteuert wird.

Weitere Details zur Bedienung von ready2mains und dessen Komponenten finden Sie in den entsprechenden technischen Informationen.

6.4 Verhalten bei Kurzschluss

Bei Kurzschluss am LED-Ausgang wird dieser abgeschaltet. Erst nach einem Neustart des Geräts wird der LED-Ausgang wieder aktiviert. Der Neustart kann entweder über Netzreset oder über das Interface (DALI, DSI, switchDIM, ready2mains) erfolgen.

6.5 Verhalten bei Leerlauf

Der LED-Treiber nimmt im Leerlauf keinen Schaden. Der LED-Ausgang wird deaktiviert und ist somit spannungsfrei. Wird eine LED-Last angeschlossen, muss das Gerät zuerst neu gestartet werden, bevor der LED-Ausgang aktiviert wird.

6.6 Überlastschutz

Wird die maximale Last um einen definierten internen Grenzwert überschritten, schaltet der LED-Treiber den LED-Ausgang ab. Erst nach einem Neustart des Geräts wird der LED-Ausgang wieder aktiviert. Der Neustart kann entweder über Netzreset oder über das Interface (DALI, DSI, switchDIM, ready2mains) erfolgen.

6.7 Übertemperaturschutz

Um den LED-Treiber vor kurzzeitiger thermischer Überlastung zu schützen, wird bei Überschreitung der Grenztemperatur der Ausgangsstrom der LED reduziert. Der Temperaturschutz wird über tc max. aktiviert. Die Aktivierungstemperatur variiert in Abhängigkeit von der LED-Last. Im DC-Betrieb ist diese Funktion deaktiviert, um die Notlichtanforderung zu erfüllen.

6.8 corridorFUNCTION

Die corridorFUNCTION kann auf zwei verschiedene Arten programmiert werden. Um die corridorFUNCTION mittels Software zu programmieren, ist ein DALI-USB-Interface in Kombination mit einer DALI PS notwendig. Als Software kann der masterCONFIGURATOR verwendet werden. Um die corridorFUNCTION auch ohne Software zu aktivieren, muss lediglich eine Spannung von 230 V für 5 min. am switchDIM-Anschluss anliegen. Danach geht das Gerät automatisch in die corridorFUNCTION.

Hinweis:

Sollte die corridorFUNCTION in einer switchDIM-Anlage fälschlicherweise aktiviert werden (z.B. ein Schalter wurde anstelle eines Tasters verwendet), so besteht die Möglichkeit nach korrekter Installation eines Tasters den corridorFUNCTION-Modus mittels 5 kurzer Tastendrücke innerhalb von 3 Sekunden wieder zu deaktivieren.

switchDIM und corridorFUNCTION sind sehr einfache Arten ein Gerät mittels handelsüblichen Tastern oder Bewegungsmeldern zu steuern. Für eine einwandfreie Funktion ist das Gerät jedoch auf eine sinusförmige Netzspannung mit einer Frequenz von 50 Hz oder 60 Hz am Steuereingang angewiesen. Besonderes Augenmerk ist auf klare, eindeutige Nulldurchgänge zu legen. Starke Netzstörungen können dazu führen, dass auch die Funktionen von switchDIM und corridorFUNCTION gestört werden.

6.9 Konstantlicht

CLO - Constant Light Output Funktion

Der Lichtstrom einer LED nimmt über ihre Lebensdauer kontinuierlich ab. Die Funktion CLO stellt sicher, dass die abgegebene Lichtmenge trotzdem stabil gleich bleibt. Dazu wird der LED-Strom im Laufe der LED-Lebensdauer kontinuierlich erhöht. Über den masterCONFIGURATOR können Startwert (in Prozent) und zu erwartende Lebensdauer definiert werden. Der LED-Treiber passt den LED-Strom anschließend automatisch an.

6.10 Power-up/-down Fading

Die Power-up/-down Fading Funktion bietet die Möglichkeit das Ein- und Ausschalt-Verhalten anzupassen. So lässt sich das Fading während des Einbzw. Ausschaltens über einen Zeitraum von 0,2 bis 16 Sekunden variabel einstellen. Dabei dimmt das Gerät in der eingestellten Zeit von 0 % auf den Power-On Level oder vom aktuell eingestellten Dimm-Level auf 0 %. Dies gilt sowohl für den Betrieb mittels switchDIM und ready2mains, wie auch bei Ein- und Ausschalten der Versorgungsspannung. Ab Werk in kein Fading (= 0 Sekunden) eingestellt.

6.11 Lichtlevel im DC-Betrieb

Der LED-Treiber ist für den Betrieb an DC-Spannung und gepulster DC-Spannung ausgelegt. Für einen zuverlässigen Betrieb ist sicherzustellen, dass der LED-Treiber auch im DC- und Notlichtbetrieb innerhalb des in Kapitel "4.1 Arbeitsfenster" spezifizierten Bereiches betrieben wird.

Lichtlevel im DC-Betrieb: programmierbar 1 – 100 % (EOF_i = 0,13) Programmierung mit DALI oder ready2mains. Im DC-Betrieb kann auch der Dimmbetrieb aktiviert werden.

Der spannungsabhängige Eingangsstrom des Betriebsgerätes inkl. LED-Modul hängt von der angeschlossenen Last ab.

Der spannungsabhängige Leerlaufstrom des Betriebsgerätes (ohne oder mit defektem LED-Modul) ist für:

AC: < 19 mA DC: < 2 mA

6.12 Intelligent Voltage Guard

Intelligent Voltage Guard ist die Bezeichnung für die elektronische Überwachung der Netzspannung. Er zeigt sofort an, wenn die Netzspannung über einen bestimmten Schwellenwert ansteigt. Es können dann schnell Maßnahmen ergriffen werden, um Schäden am LED-Driver zu verhindern.

- Wird ein Netzspannungswert von ca. 280 Vrms (Spannung hängt vom LED-Driver ab) überschritten, fangen die LED-Leuchten an zu blinken.
- Um eine Beschädigung des LED-Drivers zu vermeiden, muss bei diesem Signal die Netzversorgung abgeschaltet werden.

6.13 Software / Programmierung

Mittels Software und USB-Interface können verschiedene Funktionen aktiviert bzw. Parameter konfiguriert werden.

Hierzu ist lediglich ein DALI-USB oder ready2mains Programmer, sowie die Software (masterCONFIGURATOR) notwendig.

6.14 masterCONFIGURATOR

Ab Version 2.8:

Zum Programmieren von Funktionen (CLO, I-SELECT 2, Power-up Fading, corridorFUNCTION) und der Gerätekonfiguration (Fadetime, ePowerOnLevel, DC-Level etc.).

Weitere Informationen finden Sie im masterCONFIGURATOR Handbuch.

6.15 deviceCONFIGURATOR

PC-basierte (Windows) Software-Anwendung für die Übertragung von Parametern auf unsere Treiber.

Optimierter Workflow für den Einsatz in der OEM-Produktionslinie.
Weitere Informationen finden Sie im deviceCONFIGURATOR Handbuch.

7. Sonstiges

7.1 Isolations- bzw. Spannungsfestigkeitsprüfung von Leuchten

Elektronische Betriebsgeräte für Leuchtmittel sind empfindlich gegenüber hohen Spannungen. Bei der Stückprüfung der Leuchte in der Fertigung muss dies berücksichtigt werden.

Gemäß IEC 60598-1 Anhang Q (nur informativ!) bzw. ENEC 303-Annex A sollte jede ausgelieferte Leuchte einer Isolationsprüfung mit 500 V $_{DC}$ während 1 Sekunde unterzogen werden.

Diese Prüfspannung wird zwischen den miteinander verbundenen Klemmen von Phase und Neutralleiter und der Schutzleiteranschlussklemme angelegt. Der Isolationswiderstand muss dabei mindestens $2\,\mathrm{M}\Omega$ betragen.

Alternativ zur Isolationswiderstandsmessung beschreibt IEC 60598-1 Anhang Q auch eine Spannungsfestigkeitsprüfung mit 1500 V $_{AC}$ (oder 1,414 x 1500 V $_{DC}$). Um eine Beschädigung von elektronischen Betriebsgeräten zu vermeiden, wird von dieser Spannungsfestigkeitsprüfung jedoch dringendst abgeraten.

7.2 Bedingungen für Lagerung und Betrieb

Luftfeuchtigkeit: 5 % bis max. 85 %,

nicht kondensierend (max. 56 Tage/Jahr bei 85 %)

Lagertemperatur: -40 °C bis max. +80 °C

Bevor die Geräte in Betrieb genommen werden, müssen sie sich wieder innerhalb des spezifizierten Temperaturbereiches (ta) befinden.

Der LED-Treiber ist ein Einbau-Betriebsgerät und damit für die Verwendung in Leuchten bestimmt.

Wird das Produkt außerhalb einer Leuchte verwendet, muss in der Installation ein geeigneter Schutz von Personen und Umgebung vorgesehen werden (z.B. bei Lichtdecken)

7.3 Maximale Anzahl an Schaltzyklen

Alle LED-Treiber werden mit 50.000 Schaltzyklen geprüft. Die tatsächlich erreichbare Anzahl Schaltzyklen liegt signifikant höher.

7.4 Zusätzliche Informationen

Weitere technische Informationen auf $\underline{www.tridonic.com} \rightarrow \mathsf{Technische}$ Daten

 ${\sf Garantie bedingungen~auf~\underline{www.tridonic.com}} \rightarrow {\sf Services}$

Lebensdauerangaben sind informativ und stellen keinen Garantieanspruch

Keine Garantie wenn das Gerät geöffnet wurde!