TRIDONIC

Linear / Fläche Fixed-Output

Driver LC 75W 250-550mA flexC lp EXC

Baureihe EXCITE

Produktbeschreibung

- Konstantstrom-LED-Treiber für den Leuchteneinbau
- Dimmbar über ready2mains™ Gateway
- Dimmbereich 15 ... 100 % (Lastabhängig.
 Für Details siehe Kapitel 4.7 Dimmbetrieb im Datenblatt.)
- Ausgangsstrom einstellbar zwischen 250 550 mA über ready2mains™ Programmer oder I-select 2 Stecker
- Max. Ausgangsleistung 75 W
- Bis zu 94 % Effizienz
- Für Leuchten der Schutzklasse I und der Schutzklasse II
- Nominale Lebensdauer bis zu 100.000 h
- 5 Jahre Garantie

Gehäuse-Eigenschaften

- "Low profile" Metallgehäuse mit weißem Oberteil
- Schutzart IP20

Schnittstellen

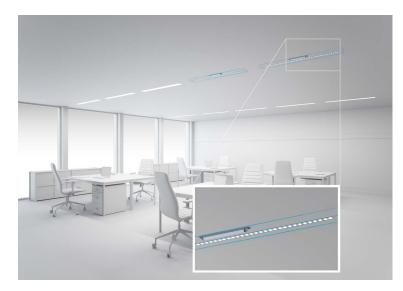
- ready2mains™ (Konfigurieren und Dimmen über Netz)
- Klemmen: 0° Steckklemmen

Funktionen

- Einstellbarer Ausgangsstrom in 1-mA-Schritten (ready2mains™, I-select 2)
- Dimmbar über ready2mains™ Schnittstelle
- Schutzfunktionen (Übertemperatur, Kurzschluss, Überlast, Leerlauf, Eingangsspannungsbereich)
- Geeignet für Sicherheitsbeleuchtungsanlagen gemäß EN 50172

Vorteil

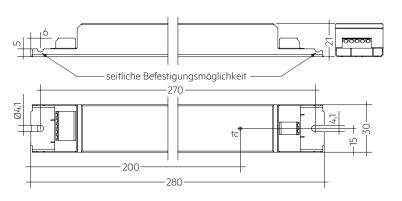
- $\bullet\,$ Anwendungsorientiertes Betriebsfenster für max. Kompatibilität
- Hohe Energieeinsparungen durch hohe Effizienz und Dimmung über ready2mains™
- Flexible Konfiguration über ready2mains™ und I-select 2
- Lebensdauer bis zu 100.000 h und 5 Jahre Garantie


Typische Anwendung

• Für Linear- und Flächenbeleuchtung in Büroanwendungen

Normen, Seite 5

TRIDONIC



Driver LC 75W 250-550mA flexC lp EXC

Baureihe EXCITE

Technische Daten

Technische Daten	
Netzspannungsbereich	220 – 240 V
Wechselspannungsbereich	198 – 264 V
Gleichspannungsbereich	176 – 280 V
Netzfrequenz	0 / 50 / 60 Hz
Überspannungsfestigkeit	320 V AC, 48 h
Typ. Nennstrom (bei 230 V, 50 Hz, Volllast) ^① ②	345 mA
Typ. Nennstrom (220 V, 0 Hz, Volllast, 100 % Dimmlevel)® ®	365 mA
Ableitstrom (bei 230 V, 50 Hz, Volllast) [®]	< 250 μΑ
Max. Eingangsleistung	81 W
Typ. Wirkungsgrad (bei 230 V / 50 Hz / Volllast)®	94 %
λ (bei 230 V, 50 Hz, Volllast)®	0,98
Typ. Eingangsstrom im Leerlauf	23,3 mA
Typ. Eingangsleistung im Leerlauf	0,39 W
Einschaltstrom (Spitze / Dauer)	57,7 A / 217 μs
THD (bei 230 V, 50 Hz, Volllast)®	< 10 %
Time to light (bei 230 V, 50 Hz, Volllast) ^①	< 500 ms
Time to light (DC-Betrieb)	< 500 ms
Umschaltzeit (AC/DC)	< 0,2 s
Abschaltzeit (bei 230 V, 50 Hz, Volllast)	< 50 ms
Ausgangsstromtoleranz®	± 5 %
Max. Ausgangsstromspitze (nicht wiederkehrend)	≤ Ausgangsstrom + 35 %
Ausgangsstrom NF Restwelligkeit (< 120 Hz)	± 5 %
Max. Ausgangsspannung	250 V
Dimmbereich [®]	15 – 100 %
Stofsspannungsfestigkeit (zwischen L - N)	1 kV
Stoßspannungsfestigkeit (zwischen L/N - PE)	2 kV
Stofspannung ausgangsseitig (gegen PE)	2,5 kV
Abmessungen LxBxH	280 x 30 x 21 mm

Bestelldaten

Тур	Artikelnumme	Verpackung Karton	Verpackung Palette	Gewicht pro Stk.
LC 75W 250-550mA flexC lp EXC	28001808	10 Stk.	960 Stk.	0,205 kg

Spezifische technische Daten

Тур					Typ. Leistungsaufnahme	Typ. Stromaufnahme		e- Umgebungs-	I-select 2
	strom [®]	spannung	spannung	leistung	(bei 230 V, 50 Hz, Volllast)	(bei 230 V, 50 Hz, Volllast)	temperatur to temperatur ta		Widerstands- wert®
	250 mA	80 V	220,0 V	55,0 W	56,3 W	251 mA	75 °C	-25 +60 °C	Offen
	275 mA	80 V	220,0 V	60,5 W	64,5 W	287 mA	75 °C	-25 +60 °C	18,18 kΩ
	300 mA	80 V	220,0 V	66,0 W	70,2 W	311 mA	75 °C	-25 +60 °C	16,67 kΩ
	325 mA	80 V	220,0 V	71,5 W	75,1 W	332 mA	75 °C	-25 +60 °C	15,38 kΩ
	350 mA	80 V	214,3 V	75,0 W	80,4 W	346 mA	75 °C	-25 +60 °C	14,29 kΩ
	375 mA	80 V	200,0 V	75,0 W	80,2 W	345 mA	75 °C	-25 +60 °C	13,33 kΩ
LC 75W 250-550mA flexC lp EXC	400 mA	80 V	187,5 V	75,0 W	80,3 W	345 mA	75 °C	-25 +60 °C	12,50 kΩ
	425 mA	80 V	176,5 V	75,0 W	80,2 W	345 mA	75 °C	-25 +60 °C	11,76 kΩ
	450 mA	80 V	166,7 V	75,0 W	80,2 W	345 mA	75 °C	-25 +60 °C	11,11 kΩ
	475 mA	80 V	157,9 V	75,0 W	80,2 W	345 mA	75 °C	-25 +60 °C	10,53 kΩ
	500 mA	80 V	150,0 V	75,0 W	80,0 W	345 mA	75 °C	-25 +60 °C	10,00 kΩ
	525 mA	80 V	142,9 V	75,0 W	80,1 W	345 mA	75 °C	-25 +60 °C	9,52 kΩ
	550 mA	80 V	136,4 V	75,0 W	80,5 W	345 mA	75 °C	-25 +60 °C	Kurzschluss (0 Ω)

[®] Gültig bei 100 % Dimmlevel.

[®] Abhängig vom eingestellten Ausgangsstrom.

[®] Der min. erreichbare Dimm-Level hängt von der angeschlossenen Last ab. Für Details siehe Kapitel 4.7 Dimmbetrieb im Datenblatt.

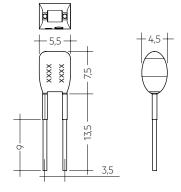
[®] Die Tabelle enthält eine Auswahl an Betriebspunkten, deckt aber nicht jeden Betriebspunkt ab. Der Ausgangsstrom kann innerhalb des Strombereiches in 1-mA-Schritten eingestellt werden.

 $[\]ensuremath{^{\circledR}}$ Nicht kompatibel mit I-select (Generation 1).

[®] Ausgangsstrom ist Mittelwert.

[®] Gilt für Treiber mit der Aufschrift "DC new" auf dem Label. Für die ältere Version ist der typ. Nennstrom (220 V, 0 Hz, Volllast, 50 % Dimmlevel) 178 mA.

I-SELECT 2 PLUG PRE / EXC


Produktbeschreibung

- Vorgefertigter Widerstand für Stromeinstellung
- Kompatibel mit LED-Treiber mit I-select 2 Interface; nicht kompatibel mit I-select (Generation 1)
- Widerstand ist basisisoliert
- Widerstandsleistung 0,25 W
- Stromtoleranz ± 2 % zum nominalen Strom
- Kompatibel mit LED-Treiber der Serien PRE und EXC

Berechnungsbeispiel

- $R [k\Omega] = 5 V / I_out [mA] \times 1000$
- Widerstandstoleranz ≤ 1 %; Leistung ≥ 0.1 W; Basisisolierung erforderlich
- Wird ein Widerstandswert außerhalb des spezifizierten Bereiches verwendet, so wird automatisch der Minimal-Strom (bei zu großem Widerstandswert) bzw. der Maximum-Strom (bei zu kleinem Widerstandwert) eingestellt

Bestelldaten

Тур	Artikel-	Farbe	Kenn-	Strom	Widerstand		
	nummer		zeichnung		wert	Sack	pro Stk.
I-SELECT 2 PLUG 250MA BL	28001106	Blau	0250 mA	250 mA	20,00 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 275MA BL	28001107	Blau	0275 mA	275 mA	18,18 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 300MA BL	28001108	Blau	0300 mA	300 mA	16,67 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 325MA BL	28001109	Blau	0325 mA	325 mA	15,38 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 350MA BL	28001110	Blau	0350 mA	350 mA	14,29 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 375MA BL	28001111	Blau	0375 mA	375 mA	13,33 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 400MA BL	28001112	Blau	0400 mA	400 mA	12,50 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 425MA BL	28001251	Blau	0425 mA	425 mA	11,76 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 450MA BL	28001113	Blau	0450 mA	450 mA	11,11 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 475MA BL	28001252	Blau	0475 mA	475 mA	10,53 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 500MA BL	28001114	Blau	0500 mA	500 mA	10,00 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 550MA BL	28001115	Blau	0550 mA	550 mA	9,09 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG MAX BL	28001099	Blau	MAX	MAX	0,00 kΩ	10 Stk.	0,001 kg

1. Normen

EN 55015

EN 61000-3-2

EN 61000-3-3

EN 61347-1

EN 61347-2-13

EN 62384

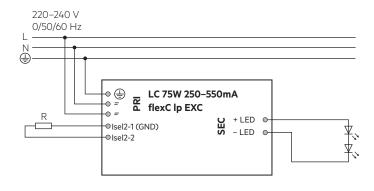
EN 61547

Gemäß EN 50172 für Zentralbatterieanlagen geeignet Gemäß EN 60598-2-22 für Notlichtinstallation geeignet

2. Thermische Angaben und Lebensdauer

2.1 Erwartete Lebensdauer

Erwartete Lebensdauer

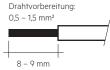

Тур	Ausgangsstrom	ta	40 °C	50 ℃	55 ℃	60 °C
LC 75W 250-550mA flexC lp EXC	250 – 550 mA	tc	55 ℃	65 ℃	70 °C	75 °C
		Lebensdauer	> 100.000 h	> 100.000 h	> 100.000 h	50.000 h

Der LED-Treiber ist für die oben angegebene Lebensdauer ausgelegt, unter Nennbedingungen mit einer Ausfallwahrscheinlichkeit von kleiner 10 %.

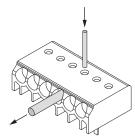
Die Abhängigkeit des Punktes to von der Temperatur ta hängt auch vom Design der Leuchte ab. Liegt die gemessene Temperatur to etwa 5 K unter to max., sollte die Temperatur ta geprüft und schließlich die kritischen Bauteile (z.B. ELCAP) gemessen werden. Detaillierte Informationen auf Anfrage.

3. Installation / Verdrahtung

3.1 Anschlussdiagramm



Verdrahtung für den Dimmbetrieb siehe ready2mains Gateway Datenblatt.


3.2 Leitungsart und Leitungsquerschnitt

Zur Verdrahtung kann ein Einzeldrahtleiter mit Leitungsquerschnitt von 0,5 bis 1,5 mm² verwendet werden. Für perfekte Funktion der Steckklemme Leitungen 8 – 9 mm abisolieren.

LED-Modul/LED-Treiber/Spannungsversorgung

3.3 Lösen der Klemmverdrahtung

Draht lösen durch Drehen und Ziehen oder Verwendung eines Lösewerkzeugs Ø 1 mm

3.4 Verdrahtungsrichtlinien

- Die sekundären Leitungen sollten für ein gutes EMV-Verhalten getrennt von den Netzanschlüssen und -leitungen geführt werden.
- Für ein gutes EMV-Verhalten sollte die LED-Verdrahtung so kurz wie möglich gehalten werden. Die max. sekundäre Leitungslänge beträgt 2 m (4 m Schleife).
- · Sekundäres Schalten ist nicht zulässig.
- Der LED-Treiber besitzt keinen sekundärseitigen Verpolschutz. LED-Module, welche keinen Verpolschutz aufweisen, können bei Verpolung zerstört werden.
- Falsche Verdrahtung des LED-Treibers kann zu irreparablen Schäden führen und eine richtige Funktion ist nicht mehr gegeben.
- Um Geräteausfälle durch Masseschlüsse zu vermeiden, muss die Verdrahtung vor mechanischer Belastung mit scharfkantigen Metallteilen (z.B. Leitungsdurchführung, Leitungshalter, Metallraster, etc.) geschützt werden.

3.5 Anschließen des LED-Moduls im Betrieb

Anschließen des LED-Moduls während des Betriebs ist nicht zulässig, da eine Ausgangsspannung > 0 V anliegen kann.

Wird eine LED-Last angeschlossen, muss das Gerät zuerst neu gestartet werden, bevor der LED-Ausgang aktiviert wird. Dies kann durch Aus- und Einschalten des LED-Betriebsberätes sowie per ready2mains erfolgen.

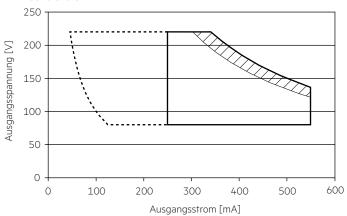
3.6 Erdanschluss

Die Erdklemme ist als Schutzerde ausgeführt. Wird der LED-Treiber geerdet muss dies mit Schutzerde (PE) erfolgen. Für die Funktion des LED-Treibers ist keine Erdung notwendig.

Zur Verbesserung von folgenden Verhalten wird ein Erdanschluss empfohlen:

- Funkstörung
- Übertragung von Netztransienten an den LED Ausgang

Generell ist es empfehlenswert bei Modulen, die auf geerdeten Leuchtenteilen bzw. Kühlkörpern montiert sind und dadurch eine hohe Kapazität gegenüber Erde darstellen, auch den LED-Treiber zu erden.


3.7 I-Select 2 Widerstände verbinden mittels Kabel

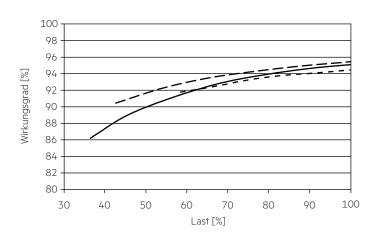
Für Details siehe:

 $http://www.tridonic.com/com/de/download/technical/LCA_PRE_LC_EXC_Produkthandbuch_de.pdf.$

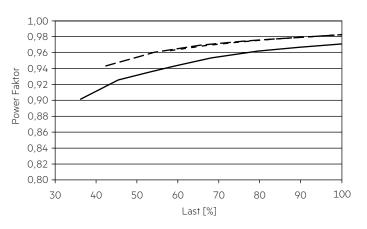
4. Elektr. Eigenschaften

4.1 Arbeitsfenster

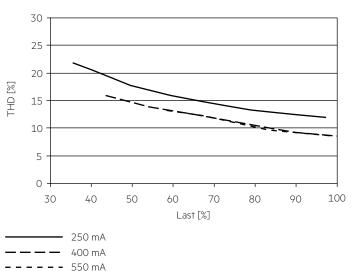
Arbeitsfenster 100 %


----- Arbeitsfenster gedimmt

LED Module die ihren nicht gedimmten Arbeitsbereich innerhalb dieses Bereiches haben, können bis 15 % Lichtlevel gedimmt werden. Für Lasten außerhalb dieser Fläche ist der erreichbare min. Dimm-Level höher.


Es ist sicherzustellen, dass der LED-Treiber ausschliefzlich innerhalb des gezeigten Arbeitsfensters betrieben wird. Besondere Aufmerksamkeit ist dem gedimmten Betrieb sowie dem DC- und Notlichtbetrieb zu widmen, da aufgrund der verwendeten Amplituden-Dimmung die Modulspannung mit dem Dimm-Level variiert. Eine Unterschreitung der spezifizierten minimalen Ausgangsspannung des LED-Treibers kann zur Abschaltung führen.

Siehe Abschnitt "6.8 DC- und Notlichtbetrieb" für mehr Informationen.


4.2 Verhältnis Effizienz zu Last

4.3 Verhältnis Power Faktor zu Last

4.4 Verhältnis THD zu Last (ohne Oberwellen < 5 mA oder 0,6 % des Eingangsstromes)

100 % Last entsprechen der max. Ausgangsleistung (Volllast) gemäß der Tabelle auf Seite 2.

4.5 Maximale Belastung von Leitungsschutzautomaten

Sicherungsautomat	C10	C13	C16	C20	B10	B13	B16	B20	Einschaltstrom	
Installation Ø	1,5 mm ²	1,5 mm ²	2,5 mm ²	2,5 mm ²	1,5 mm ²	1,5 mm ²	2,5 mm ²	2,5 mm ²	l _{max}	Pulsdauer
LC 75W 250-550mA flexC lp EXC	10	13	16	21	6	8	10	12	57,7 A	217 µs

Kalkulation verwendet typische Werte der Leitungsschutzautomaten-Serie ABB S200 als Referenz.

Tatsächliche Werte können je nach verwendeten Leitungsschutzautomatentypen und der Installationsumgebung abweichen.

4.6 Oberwellengehalt des Netzstromes (bei 230 V / 50 Hz und Volllast) in %

	THD	3.	5.	7.	9.	11.
LC 75W 250-550mA flexC lp EXC	< 10	< 7	< 5	< 5	< 4	< 3

4.7 Dimmbetrieb

Dimmbereich 15 bis 100 %.

Der min. erreichbare Dimm-Level hängt von der angeschlossenen Last ab. Das Arbeitsfenster zeigt die min. erreichbare Leistung im gedimmten Zustand.

Für Lasten unterhalb der max. Ausgangsleistung kann der min. Dimm-Level höher sein

Um den min. Dimm-Level für eine bestimmte Last zu bestimmen, studieren Sie bitte das Arbeitsfenster sorgfältig.

Für weitere Informationen wenden Sie sich bitte an Ihren Tridonic Vertrieb.

5. Schnittstellen / Kommunikation

5.1 Steuereingang ready2mains (L, N)

Das digitale Steuersignal ready2mains wird direkt auf die Netzspannung moduliert und an die Netzklemmen verdrahtet (L und N).

6. Funktionen

6.1 Funktion: Einstellbarer Strom

Der Ausgangsstrom des LED-Treibers kann in einem vorgegebenen Bereich eingestellt werden. Zur Einstellung stehen zwei Optionen zur Verfügung.

Option 1: I-select 2

Die Stromeinstellung erfolgt über einen passenden I-select 2 Widerstand oder Fremdwiderstand, welcher in die I-select 2 Klemmen eingesteckt wird. Die mathematische Beziehung zwischen Ausgangsstrom und Widerstandswert wird in der Produktbeschreibung "Zubehör I-SELECT 2 PLUG" erläutert.

Bitte beachten Sie, dass die Widerstandswerte für I-select 2 nicht mit I-select 1 kompatibel sind. Aus der Installation eines falschen Widerstands können möglicherweise irreparable Schäden an den LED-Modulen entstehen.

Widerstände für die wichtigsten Ausgangsstromwerte können von Tridonic bezogen werden (siehe Zubehör).

Option 2: ready2mains

Die Konfiguration erfolgt mittels optionalem Programmiergerät und der entsprechenden Konfigurationssoftware über die ready2mains Schnittstelle.

Über ready2mains kann der Strom maximal fünfmal eingestellt werden.

Um die LED-Treiber zu programmieren ist eine angeschlossene Last notwendig, die sich im Betriebsfenster des LED-Treibers befindet.

Die Priorität der Stromeinstellmethoden ist I-select 2 gefolgt von ready2mains.

6.2 ready2mains - Konfiguration

Die ready2mains Schnittstelle ermöglicht die Konfiguration der wichtigsten Parameter über die Netzverdrahtung.

Für EXC LED-Treiber ist dies der LED-Ausgangsstrom sowie das optionale Setzen des Lockbits um eine spätere unbeabsichtigte Konfiguration zu unterbinden.

Die Konfiguration erfolgt dabei mithilfe des ready2mains Programmers, entweder direkt am Programmer selbst oder über eine entsprechende PC-Software.

Details zur Konfiguration finden Sie in den in den technischen Informationen zum ready2mains Programmer und dessen Tools.

6.3 ready2mains - Dimming

Mithilfe der ready2mains Schnittstelle kann der LED-Treiber über die Netzverdrahtung gedimmt werden, eine zusätzliche Steuerleitung für das Dimmsignal ist nicht erforderlich. Die Übersetzung der Dimmbefehle in das digitale ready2mains Protokoll erfolgt dabei über ein ready2mains Gateway, welches die Kommandos von der Steuereinheit auf die Netzleitung überträgt und synchron an alle angeschlossenen LED-Treiber sendet (Broadcast). Details zum Dimmen mittels ready2mains finden Sie in den in den technischen Informationen zu ready2mains sowie den ready2mains Gateways.

6.4 Verhalten bei Kurzschluss

Bei Kurzschluss am LED-Ausgang wird dieser abgeschaltet. Erst nach einem Neustart des Geräts wird der LED-Ausgang wieder aktiviert. Der Neustart kann entweder über Netzreset oder über das Interface ready2mains erfolgen.

6.5 Verhalten bei Leerlauf

Der LED-Treiber nimmt im Leerlauf keinen Schaden. Der LED-Ausgang wird deaktiviert und ist somit spannungsfrei. Wird eine LED-Last angeschlossen, muss das Gerät zuerst neu gestartet werden, bevor der LED Ausgang aktiviert wird.

6.6 Überlastschutz

Der LED-Treiber schaltet bei Überschreitung des Ausgangsspannungsbereiches den LED-Ausgang ab. Erst nach einem Neustart des Geräts wird der LED-Ausgang wieder aktiviert. Der Neustart kann entweder über Netzreset oder über das Interface ready2mains erfolgen.

6.7 Übertemperaturschutz

Um den LED-Treiber vor kurzzeitiger thermischer Überlastung zu schützen, wird bei Überschreitung der Grenztemperatur der Ausgangsstrom der LED reduziert. Der Temperaturschutz wird ca. 5 °C über to max aktiv (siehe Seite 2). Im DC-Betrieb ist diese Funktion deaktiviert, um die Notlichtanforderung zu erfüllen.

6.8 DC- und Notlichtbetrieb

Der LED-Treiber ist für den Betrieb an DC-Spannung und gepulster DC-Spannung ausgelegt. Für einen zuverlässigen Betrieb ist sicherzustellen, dass der LED-Treiber auch im DC- und Notlichtbetrieb innerhalb des in Kapitel "4.1 Arbeitsfenster" spezifizierten Bereiches betrieben wird.

Für einen begrentzten Zeitraum können zwei verschiedene Versionen dieses Treibers verfügbar sein.

Version mit "DC new" auf dem Label: Lichtlevel im DC-Betrieb (EOF_i): 95 % (nicht einstellbar) Version ohne "DC new" auf dem Label:

Lichtlevel im DC-Betrieb (EOF_i): 50 % (nicht einstellbar)

Der spannungsabhängige Eingangsstrom des Betriebsgerätes inkl. LED-Modul hängt von der angeschlossenen Last ab.

Der spannungsabhängige Leerlaufstrom des Betriebsgerätes (ohne oder mit defektem LED-Modul) ist für:

AC: < 23 mA (bei 230 V) DC: 5 – 7 mA (bei 186 – 275 V, 0 Hz)

7. Sonstiges

7.1 Isolations- bzw. Spannungsfestigkeitsprüfung von Leuchten

Elektronische Betriebsgeräte für Leuchtmittel sind empfindlich gegenüber hohen Spannungen. Bei der Stückprüfung der Leuchte in der Fertigung muss dies berücksichtigt werden.

Gemäß IEC 60598-1 Anhang Q (nur informativ!) bzw. ENEC 303-Annex A sollte jede ausgelieferte Leuchte einer Isolationsprüfung mit 500 V_{DC} während einer Sekunde unterzogen werden.

Diese Prüfspannung wird zwischen den miteinander verbundenen Klemmen von Phase und Nullleiter und der Schutzleiteranschlussklemme angelegt. Der Isolationswiderstand muss dabei mindestens $2\,\mathrm{M}\Omega$ betragen.

Alternativ zur Isolationswiderstandsmessung beschreibt IEC 60598-1 Anhang Q auch eine Spannungsfestigkeitsprüfung mit 1500 V $_{\text{AC}}$ (oder 1,414 x 1500 V $_{\text{DC}}$). Um eine Beschädigung von elektronischen Betriebsgeräten zu vermeiden, wird von dieser Spannungsfestigkeitsprüfung jedoch dringendst abgeraten.

7.2 Bedingungen für Lagerung und Betrieb

Luftfeuchtigkeit: 5 % bis max. 85 %,

nicht kondensierend

(max. 56 Tage/Jahr bei 85 %)

Lagertemperatur: -40 °C bis max. +80 °C

Bevor die Geräte in Betrieb genommen werden, müssen sie sich wieder innerhalb des spezifizierten Temperaturbereiches (ta) befinden.

7.3 Zusätzliche Informationen

Weitere technische Informationen auf www.tridonic.com → Technische Daten

Garantiebedingungen auf www.tridonic.com → Services

Lebensdauerangaben sind informativ und stellen keinen Garantieanspruch dar. Keine Garantie wenn das Gerät geöffnet wurde!

7