TRIDONIC

Linear / Fläche Fixed-Output

Driver LC 38W 500-700mA flexC lp ADV

Baureihe ADVANCED

Produktbeschreibung

- Konstantstrom-LED-Treiber für den Leuchteneinbau
- Neue Version mit DC-Betrieb und EL-Zeichen
- Ausgangsstrom einstellbar zwischen 500 700 mA
- Max. Ausgangsleistung 38 W
- Bis zu 85 % Effizienz
- Nominale Lebensdauer bis zu 50.000 h
- Für Leuchten der Schutzklasse I und der Schutzklasse II
- Temperaturschutz gemäß EN 61347-2-13 C5e
- 5 Jahre Garantie

Gehäuse-Eigenschaften

- "Low profile" Metallgehäuse mit weißem Oberteil
- Schutzart IP20

Schnittstellen

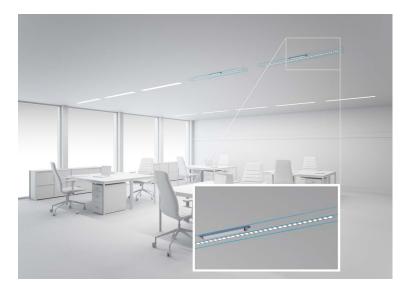
• Klemmen: 45° Steckklemmen

Funktion

- Überlastschutz
- Kurzschlussschutz
- Leerlaufschutz
- Übertemperaturschutz
- Schutz gegen Burst-Spannungen 1 kV
- Schutz gegen Surge-Spannungen 1 kV (zwischen L und N)
- Schutz gegen Surge-Spannungen 2 kV (zwischen L/N und Erde)
- Geeignet für Sicherheitsbeleuchtungsanlagen gemäß EN 50172

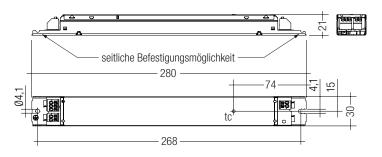
Typische Anwendung

• Für Linear- und Flächenbeleuchtung in Büroanwendungen



Normen, Seite 4

Anschlussdiagramme und Installationsbeispiele, Seite 4



Driver LC 38W 500-700mA flexC lp ADV

Baureihe ADVANCED

Technische Daten

Technische Daten	
Netzspannungsbereich	220 – 240 V
	198 – 264 V
Gleichspannungsbereich	176 – 280 V
Max. Eingangsstrom (bei 230 V, 50 Hz, Volllast)	0,22 A
Typ. Eingangsstrom (bei 230 V, 0 Hz, Volllast)	0,189 A
Ableitstrom (bei 230 V, 50 Hz, Volllast)	< 400 μΑ
Netzfrequenz	0 / 50 / 60 Hz
Überspannungsfestigkeit	320 V AC, 1 h
Max. Eingangsleistung	47 W
Typ. Leistungsaufnahme (bei 230 V, 50 Hz, Volllast) ^①	44,7 W
Min. Ausgangsleistung	10 W
Max. Ausgangsleistung	38 W
Typ. Wirkungsgrad (bei 230 V / 50 Hz / Volllast) [®]	85 %
λ (bei 230 V, 50 Hz, Volllast) [®]	0,95
Ausgangsstromtoleranz ^② ®	± 7,5 %
Max. Ausgangsstromspitze®	≤ Ausgangsstrom + 20 %
Max. Ausgangsspannung	60 V
THD (bei 230 V, 50 Hz, Volllast)	< 8 %
Ausgangsstrom NF Restwelligkeit (< 120 Hz)	± 5 %
Time to light (bei 230 V, 50 Hz, Volllast)	< 500 ms
Time to light (DC-Betrieb)	< 500 ms
Umschaltzeit (AC/DC)	< 500 ms
Abschaltzeit (bei 230 V, 50 Hz, Volllast)	≤ 0,5 s
Haltezeit bei Netzunterbrechung (Ausgang)	0 s
Umgebungstemperatur ta (bei Lebensdauer 50.000 h)	40 °C
Lagertemperatur ts	-40 +80 °C
Abmessung L x B x H	280 x 30 x 21 mm
Lochabstand D	268 mm

Bestelldaten

Tvp	rtikel- ımmer	Verpackung Karton	Verpackung Kleinmengen		
LC 38W 500-700mA flexC lp ADV 87	7500498	50 Stk.	900 Stk.	2.700 Stk.	0,188 kg

Spezifische technische Daten

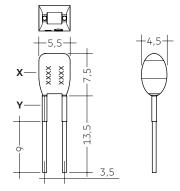
Тур	Ausgangs-	Min.	Max.	Max.	Typ. Leistungsaufnahme	Typ. Stromaufnahme	Max. Gehäuse-	Umgebungs-	I-out select	Widerstand [®]
	strom [®]	Vorwärts- spannung	Vorwärts- spannung	Ausgangs- leistung	(bei 230 V, 50 Hz, Volllast)(, · ·		9 9		
	500 mA	20 V	54 V	27,0 W	31,0 W	145 mA	70 °C	-20 +50 °C	0-1	ADV Type A
	550 mA	20 V	54 V	29,7 W	35,0 W	156 mA	75 °C	-20 +50 °C	0-1	ADV Type D
LC 38W 500-700mA flexC lp	600 mA	20 V	54 V	32,4 W	38,0 W	171 mA	75 °C	-20 +50 °C	0-2	ADV Type A
ADV	650 mA	20 V	54 V	35,1 W	40,0 W	185 mA	80 °C	-20 +50 °C	0-2	ADV Type D
	700 mA	20 V	54 V	38,0 W	44,7 W	200 mA	80 °C	-20 +50 °C	offen	_

^① Testwert bei 700 mA.

² Ausgangsstrom ist Mittelwert.

 $^{^{\}scriptsize{\textcircled{3}}}$ Testwert bei 25 °C.

 $^{^{\}scriptsize \textcircled{4}}$ Type A ist ein Kurzschlussstecker (O $\Omega).$


 $[\]ensuremath{^{\texttt{\$}}}$ Testwert bei Standardausgangsstrom.

ADV Plug für Ausgangsstromauswahl

Produktbeschreibung

- Vorgefertigter Widerstand für Stromeinstellung
- Kompatibel mit LED-Treiber der Serie LC flexC ADV; nicht kompatibel mit I-select (Generation 1) und I-select 2 (Generation 2)
- Widerstand ist basisisoliert
- Stellen Sie bei Verwendung eigener Widerstände sicher, dass der Widerstand isoliert ist
- Widerstandsleistung 0,25 W
- Stromtoleranz ± 2 % zusätzlich zur Ausgangsstromtoleranz
- Hot-plug des Widerstandes ist nicht zulässig
- Details zur Stromeinstellung siehe Tabelle "Spezfische technische Daten" des jeweiligen LED-Treibers und Kapitel 3.8 Stromeinstellung

Bestelldaten

Тур	Artikel-	Farbe des	Farbe des	Kenn-	Wider-	Verpackung	Gewicht
	nummer	X Bereichs	Y Bereichs	zeichnung	standswert	Sack	pro Stk.
ADV Plug Type A YL	28001771	Gelb	Gelb	Α	0,0 Ω	10 Stk.	0,001 kg
ADV Plug Type D YL	28001774	Gelb	Weiß	D	54,9 kΩ	10 Stk.	0,001 kg

1. Normen

EN 55015

EN 61000-3-2

FN 61000-3-3

EN 61347-1

EN 61347-2-13

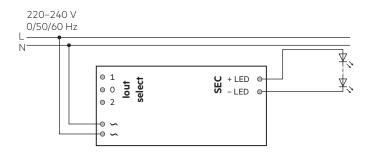
EN 61547

EN 62384

Gemäß EN 50172 für Zentralbatterieanlagen geeignet Gemäß EN 60598-2-22 für Notlichtinstallation geeignet

2. Thermische Angaben und Lebensdauer

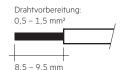
2.1 Erwartete Lebensdauer


Erwartete Lebensdauer

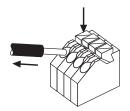
Тур	ta	40°C	50 °C	60 °C
LC 38W 500-700mA flexC lp ADV	tc	70 °C	80°C	Х
EC 36W 300-700IIIA HEXC IP ADV	Lebensdauer	50.000 h	30.000 h	×

Der LED-Treiber ist für die oben angegebene Lebensdauer ausgelegt, unter Nennbedingungen mit einer Ausfallwahrscheinlichkeit von kleiner 10 %.

3. Installation / Verdrahtung


3.1 Anschlussdiagramm

3.2 Leitungsart und Leitungsquerschnitt


Zur Verdrahtung kann Litzendraht mit Aderendhülsen oder Volldraht von 0,5 bis 1,5 mm² verwendet werden.

Für perfekte Funktion der Steckklemmen Leitungen 8,5 – 9,5 mm abisolieren.

3.3 Lösen der Klemmenverdrahtung

Dazu den "Drücker" an der Klemme betätigen und den Draht nach vorne abziehen.

3.4 Installationshinweis

Das LED-Modul und alle Kontaktstellen innerhalb der Verdrahtung ausreichend gegen 3 kV Überspannung isolieren. Luft- und Kriechstrecke einhalten.

3.5 Verdrahtungsrichtlinien

- Alle Verbindungen möglichst kurz halten, um gutes EMV-Verhalten zu erreichen.
- Netzleitungen getrennt vom LED-Treiber und anderen Leitungen führen (ideal 5 – 10 cm Abstand)
- Max. Länge der Ausgangsleitungen beträgt 2 m.
- Falsche Verdrahtung kann LED-Module zerstören.
- Die Verdrahtung muss vor mechanischer Belastung mit scharfkantigen Metallteilen (z.B. Leitungsdurchführung, Leitungshalter, Metallraster, etc.) geschützt werden.
- Die Stromeinstellung muss gemäß der Anforderung der Niederspannungsanlagen eingebaut werden.

3.6 Austausch LED-Modul

- 1. Netz aus
- 2. LED-Modul entfernen
- 3. 20 Sekunden warten
- 4. LED-Modul wieder anschließen

Hot-Plug-In oder Schalten der LEDs am Ausgang ist nicht erlaubt und kann zu sehr hohem Strom in den LEDs führen.

3.7 Erdanschluss

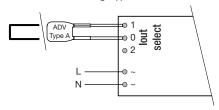
Der Erdanschluss ist als Schutzerde ausgeführt. Der LED-Treiber kann über das Metallgehäuse geerdet werden. Wird der LED-Treiber geerdet, muss dies mit Schutzerde (PE) erfolgen. Für die Funktion des LED-Treibers ist keine Erdung notwendig.

Zur Verbesserung von folgendem Verhalten wird ein Erdanschluss empfohlen.

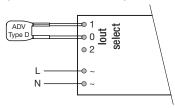
- Funkstörung
- Übertragung von Netztransienten an den LED Ausgang

Generell ist es empfehlenswert bei Modulen, die auf geerdeten Leuchtenteilen bzw. Kühlkörpern montiert sind und dadurch eine hohe Kapazität gegenüber Erde darstellen, auch den LED-Treiber zu erden.

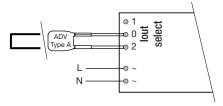
Für Klasse I Anwendung, muss die Schutzerde mit dem Metallgehäuse verbunden werden (unterer Teil).

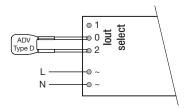

Für Klasse II Anwendung, ist der Anschluss der Schutzerde nicht notwendig, aber es gibt hier 2 Szenarien die berücksichtig werden sollten:

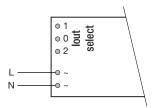
- Wenn der LED-Treiber an ein Metallteil in der Leuchte geschraubt wird, dann müssen LED-Treiber und LED Modul isoliert werden.
- Wenn der LED-Treiber an ein Kunststoffteil in der Leuchte geschraubt wird, dann muss das LED Modul isoliert werden.


Änderungen vorbehalten. Angaben ohne Gewähr.

3.8 Stromeinstellung

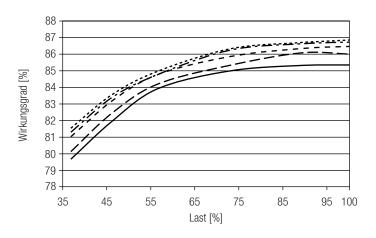

500 mA: Klemmen 0 und 1 verbunden mit 0 Ω Draht (max. 6 cm Länge) oder Widerstand ADV Plug Type A BR (Artikelnummer: 28001771)


550 mA: Klemmen 0 und 1 verbunden mit Widerstand ADV Plug Type D BR (Artikelnummer: 28001774)

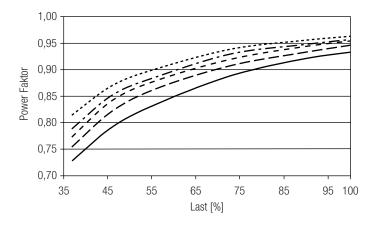

600 mA: Klemmen 0 und 2 verbunden mit 0 Ω Draht (max. 6 cm Länge) oder Widerstand ADV Plug Type A BR (Artikelnummer: 28001771)

650 mA: Klemmen 0 und 2 verbunden mit Widerstand ADV Plug Type D BR (Artikelnummer: 28001774)

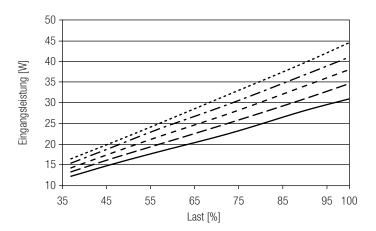
700 mA: Alle Klemmen offen

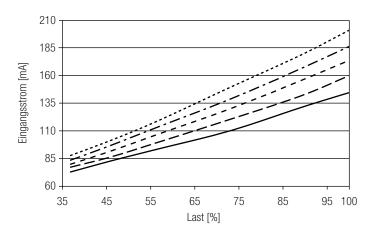

3.9 Gerätebefestigung

Max. Drehmoment für die Befestigung: 0,5 Nm/M4

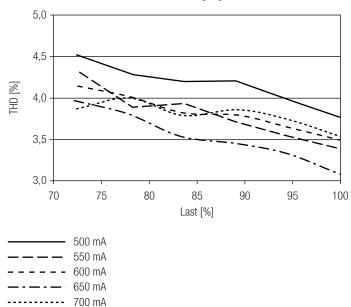

4. Elektr. Eigenschaften

Testwerte bei 230 V 50 Hz.


4.1 Wirkungsgrad in Abhängigkeit von der Last


4.2 Power Faktor in Abhängigkeit von der Last

4.3 Eingangsleistung in Abhängigkeit von der Last



4.4 Eingangsstrom in Abhängigkeit von der Last

4.5 THD in Abhängigkeit von der Last

THD ohne Oberwellen < 5 mA (0,6 %) des Eingangsstromes:

4.6 Maximale Belastung von Leitungsschutzautomaten

Sicherungsautomat	C10	C13	C16	C20	B10	B13	B16	B20	Einsc	haltstrom
Installation Ø	1,5 mm ²	1,5 mm ²	1,5 mm ²	2,5 mm ²	1,5 mm ²	1,5 mm ²	1,5 mm ²	2,5 mm ²	Imax	Pulsdauer
LC 38W 500-700mA flexC lp ADV	27	35	45	58	16	21	27	35	25 A	250 μs

4.7 Oberwellengehalt des Netzstromes (bei 230 V / 50 Hz und Volllast) in %

	THD	3.	5.	7.	9.	11.
LC 38W 500-700mA flexC lp ADV	< 8	< 10	< 5	< 5	< 3	< 3

Gemäß 6100-3-2. Oberwellen < 5 mA oder < 0,6 % (welcher auch immer größer ist) des Eingangsstromes werden nicht für die Berechnung vom THD berücksichtigt.

5. Funktionen

5.1 Verhalten bei Kurzschluss

Bei Kurzschlufg am LED-Ausgang schaltet der LED-Treiber aus. Nach Behebung des Kurzschlufges erfolgt automatische Rückkehr in den nominalen Betrieb.

5.2 Verhalten bei Leerlauf

Der LED-Treiber arbeitet im Latch-Modus um den Ausgang zu schützen, damit die Anwendung im sicheren Bereich arbeitet, falls die LED Verdrahtung Aufgrund eines Fehlers offen ist.

5.3 Überlastschutz

Bei Überschreitung des Ausgangsspannungsbereiches schützt sich der LED-Treiber selbst und die LED's werden abgeschaltet. Nach Behebung der Überlast erfolgt nach einem Netzreset eine Rückkehr in den nominalen Betrieb.

5.4 Übertemperaturschutz

Der LED-Treiber arbeitet im Latch-Modus, eine Rückkehr in den nominalen Betrieb erfolgt nach einem Netzreset.

5.5 DC- und Notlichtbetrieb

Der LED-Treiber ist für den Betrieb an DC-Spannung und gepulster DC-Spannung ausgelegt. Für einen zuverlässigen Betrieb ist sicherzustellen, dass der LED-Treiber auch im DC- und Notlichtbetrieb innerhalb des spezifizierten Bereiches betrieben wird.

Lichtlevel im DC-Betrieb (EOF_i): 100 % (nicht einstellbar)

Der spannungsabhängige Eingangsstrom des Betriebsgerätes inkl. LED-Modul hängt von der angeschlossenen Last ab.

Der spannungsabhängige Leerlaufstrom des Betriebsgerätes (ohne oder mit defektem LED-Modul) ist für:

AC: < 43 mA DC: < 2 mA

6. Sonstiges

6.1 Isolations- bzw. Spannungsfestigkeitsprüfung von Leuchten

Elektronische Betriebsgeräte für Leuchtmittel sind empfindlich gegenüber hohen Spannungen. Bei der Stückprüfung der Leuchte in der Fertigung muss dies berücksichtigt werden.

Gemäß IEC 60598-1 Anhang Q (nur informativ!) bzw. ENEC 303-Annex A sollte jede ausgelieferte Leuchte einer Isolationsprüfung mit 500 V pc während 1 Sekunde unterzogen werden.

Diese Prüfspannung wird zwischen den miteinander verbundenen Klemmen von Phase und Nullleiter und der Schutzleiteranschlussklemme angelegt. Der Isolationswiderstand muss dabei mindestens $2\,\mathrm{M}\Omega$ betragen.

Alternativ zur Isolationswiderstandsmessung beschreibt IEC 60598-1 Anhang Q auch eine Spannungsfestigkeitsprüfung mit 1500 V $_{AC}$ (oder 1,414 x 1500 V $_{DC}$). Um eine Beschädigung von elektronischen Betriebsgeräten zu vermeiden, wird von dieser Spannungsfestigkeitsprüfung jedoch dringendst abgeraten.

6.2 Bedingungen für Lagerung und Betrieb

Luftfeuchtigkeit: 5 % bis max. 85 %,

nicht kondensierend

(max. 56 Tage/Jahr bei 85 %)

Lagertemperatur: -40 °C bis max. +80 °C

Bevor die Geräte in Betrieb genommen werden, müssen sie sich wieder innerhalb des spezifizierten Temperaturbereiches (ta) befinden.

6.3 Zusätzliche Informationen

weitere technische Informationen auf <u>www.tridonic.com</u> \rightarrow Technische Daten

Garantiebedingungen auf <u>www.tridonic.com</u> \rightarrow Services

Lebensdauerangaben sind informativ und stellen keinen Garantieanspruch dar. $% \label{eq:continuous}%$

Keine Garantie wenn das Gerät geöffnet wurde!